Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep creep means milder, more frequent earthquakes along Southern California's San Jacinto fault

10.11.2009
With an average of four mini-earthquakes per day, Southern California's San Jacinto fault constantly adjusts to make it a less likely candidate for a major earthquake than its quiet neighbor to the east, the Southern San Andreas fault, according to an article in the journal Nature Geoscience.

"Those minor to moderate events along the San Jacinto fault relieve some of the stress built by the constantly moving tectonic plates," said Shimon Wdowinski, research associate professor at the University of Miami's Rosenstiel School of Marine and Atmospheric Science.

Previous estimates may have overstated the likelihood of a major event on the 140-mile long San Jacinto fault, which begins between Palm Springs and Los Angeles and runs south toward the Salton Sea east of San Diego. The US Geological Survey (USGS) is forecasting a 31 percent chance that an earthquake with a magnitude of 6.7 or higher on the Richter Scale will occur on the San Jacinto fault in the next 30 years. Only the San Andreas fault, with a 59 percent chance, is more likely to have a major event during the same period.

"Thirty-one percent is a high probability, when it comes to earthquake forecasting—the second highest in Southern California," said Wdowinski. "Our data show that the next significant event for the San Jacinto fault would probably be between 6.0 and 6.7. It doesn't sound like much, but in earthquake terms it is the difference between a major earthquake and a moderate event."

A magnitude 6.0 earthquake may be felt for dozens of miles from the epicenter, but building damage especially in California, due to strict building codes, would be minimal. As the magnitude approaches and passes 7.0, which is ten times stronger than an earthquake with a magnitude of 6.0, more serious property damage and loss of life may occur.

Wdowinski feels that the San Jacinto fault is not as dangerous as predicted, because "deep creep" releases elastic strain of the moving plates approximately six to ten miles beneath the surface. As a result, the accumulation of strain along the fault occurs in the upper six miles of crust, which may be released by more frequent, moderate earthquakes. However a major event can still occur on the San Jacinto fault, but with lower probability, if two segments of the fault rupture simultaneously.

By contrast, the more famous Southern San Andreas fault to the east is locked some 10 miles down, throughout the entire seizmogenic crust. It has had very few earthquakes to release that strain but promises to release much more energy—a major earthquake—when a rupture occurs.

"It's like bending a stick," said Wdowinski. "You can bend it until it breaks and releases the energy. The San Jacinto fault [on the left in the figure below] is like a stick that has a cut in it. When you begin bending it and it breaks, less energy is released. Deep creep—evidenced by those small, more frequent earthquakes—in effect forms that small cut that reduces the release of energy when the rupture finally occurs. We are less likely to have the big energy release of a major earthquake because the energy is not allowed to build up."

The Southern San Andreas fault to the east is like a thicker stick without any stress-relieving cuts, which will snap with much greater force. USGS predicts that the San Andreas fault has a 59 percent chance of a major earthquake (greater than a magnitude of 6.7) in the next 30 years.

Aside from earthquakes, Wdowinski's primary research interest at the University of Miami is hydrology and water flow in wetlands and the Florida Everglades, in particular. The link between desert earthquakes and swamps is geodesy, the study of the earth's size, shape, orientation, gravitational field, and their variations over time. He uses satellite imaging and the Global Positioning System (GPS) to measure those slight changes.

"These are the new tools of geodesy," said Wdowinski, who co-authored a May 2009 paper in the journal Eos, Transactions, a publication of the American Geophysical Union. The article highlighted "Geodesy in the 21st Century", a look at how technological advances are benefiting the field and are applicable to many important societal issues, such as climate change, natural hazards, and water resources.

After completing his doctoral degree at Harvard, Wdowinski completed a post-doctoral fellowship at Scripps Oceanographic Institute in Southern California, where he studied the San Jacinto fault. A native of Israel, Wdowinski joined the Rosenstiel School faculty in 2005.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>