Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decades of research show massive Arctic ice cap is shrinking

13.04.2010
Rate of ice-cap melt has been accelerating since 1985

Close to 50 years of data show the Devon Island ice cap, one of the largest ice masses in the Canadian High Arctic, is thinning and shrinking.

A paper published in the March edition of Arctic, the journal of the University of Calgary's Arctic Institute of North America, reports that between 1961 and 1985, the ice cap grew in some years and shrank in others, resulting in an overall loss of mass. But that changed 1985 when scientists began to see a steady decline in ice volume and area each year.

"We've been seeing more mass loss since 1985," says Sarah Boon, lead author on the paper and a Geography Professor at the University of Lethbridge. The reason for the change? Warmer summers.

The High Arctic is essentially a desert with low rates of annual precipitation. There is little accumulation of snow in the winter and cool summers, with temperatures at or below freezing, serve to maintain levels. Any increase of snow and ice takes years.

This delicate equilibrium is easily upset. One warm summer can wipe out five years of growth. And though the accelerated melting trend began in 1985, the last decade has seen four years with unusually warm summers - 2001, 2005, 2007 and 2008.

"What we see during these warm summers is the extent of the melt is greater," says Boon about the results of a five-year remote sensing study that ran between 2000 and 2004.

The white surfaces of snow and ice reflect heat – a process known as the albedo effect. Retreating ice exposes dark soil and gravel, which absorb heat and increase the melt rate of ice along the periphery of the cap. But it's not only the edges of the cap that are losing ice. At lower altitudes the ice is thinning as well.

Changes to the Devon ice cap, which covers approximately 14,400 sq. km, could have multiple impacts on everything from ship traffic to sea level.

There has already been an increase in the number of icebergs calving off from outlet glaciers that flow into the ocean. Boon explains that melt water runs between the bottom of the glacier and the ground, creating a slippery cushion that allows the glacier to slide forward more rapidly than it would in colder conditions.

"There are a lot of things we need to consider. One is the iceberg calving and its implications for shipping. These things don't just go away, they float out into the ocean," says Boon. A second area of concern is the contribution of increased glacier melt to rising sea level.

The work of Boon and her colleagues demonstrates the importance of long-term research. Work on Devon Island began in 1961 with researchers from the Arctic Institute of North America, including long-time Arctic scientist Roy 'Fritz' Koerner, who was part of the current study until his death in 2008. This ongoing research, which is continuing thanks to federal International Polar year funding, has created a comprehensive dataset that contributes to the understanding of the complex play between the ice cap, the atmosphere and the ocean.

"We all know long-term studies are important but they are really hard to pay for."

For media interviews with Sarah Boon contact:
Dr. Sarah Boon
Department of Geography, University of Lethbridge
Tel: 403-332-4569; Email: sarah.boon@uleth.ca
or
Bob Cooney, Communications Officer, University of Lethbridge
Tel: 403 330-4609; email: robert.cooney@uleth.ca
For information on Arctic Science Promotion program:
Ruth Klinkhammer, Director of Communications, Arctic Institute of North America
Tel: 403 220-7294, Email: r.klinkhammer@ucalgary.ca
This media release is part of the Promotion of Arctic Science, an Arctic Institute of North America project made possible with the generous support of the Government of Canada Program for International Polar Year. The mission of the Arctic Institute of North America at the University of Calgary is to advance the study of the North American and circumpolar Arctic and to acquire, preserve and disseminate information on physical, environmental and social conditions in the North.

Ruth Klinkhammer | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.arctic.ucalgary.ca

Further reports about: Arctic Arctic ice cap Bird Communication Polar Day Science TV sea level

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>