Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadline for climate action – Act strongly before 2035 to keep warming below 2°C

30.08.2018

If governments don’t act decisively by 2035 to fight climate change, humanity could cross a point of no return after which limiting global warming below 2°C in 2100 will be unlikely, according to a new study by scientists in the UK and the Netherlands. The research also shows the deadline to limit warming to 1.5°C has already passed, unless radical climate action is taken. The study is published today in the European Geosciences Union journal Earth System Dynamics.

“In our study we show that there are strict deadlines for taking climate action,” says Henk Dijkstra, a professor at Utrecht University in the Netherlands and one of the study authors. “We conclude that very little time is left before the Paris targets [to limit global warming to 1.5°C or 2°C] become infeasible even given drastic emission reduction strategies.”


The Point of No Return: These plots from the study show the probability of staying below the 1.5°C (left) or 2°C (right) global-average temperature increases, set by the Paris Agreement.

Aengenheyster et al., Earth System Dynamics, 2018


Extreme rainfall and flooding could become more frequent if humanity passes the point of no return.

Anita Di Chiara (distributed via imaggeo.egu.eu)

Dijkstra and his colleagues at the Utrecht Centre for Complex Systems Studies and at Oxford University, UK, wanted to find the ‘point of no return’ or deadline for climate action: the latest possible year to start strongly cutting greenhouse-gas emissions before it’s too late to avoid dangerous climate change.

“The ‘point of no return’ concept has the advantage of containing time information, which we consider very useful to inform the debate on the urgency of taking climate action,” says Matthias Aengenheyster, a doctoral researcher at Oxford University and the study’s lead author.

Using information from climate models, the team determined the deadline for starting climate action to keep global warming likely (with a probability of 67%) below 2°C in 2100, depending on how fast humanity can reduce emissions by using more renewable energy. Assuming we could increase the share of renewable energy by 2% every year, we would have to start doing so before 2035 (the point of no return). If we were to reduce emissions at a faster rate, by increasing the share of renewable energy by 5% each year, we would buy another 10 years.

The researchers caution, however, that even their more modest climate-action scenario is quite ambitious. “The share of renewable energy refers to the share of all energy consumed. This has risen over the course of over two decades from almost nothing in the late nineties to 3.6% in 2017 according to the BP Statistical Review, so the [yearly] increases in the share of renewables have been very small,” says Rick van der Ploeg, a professor of economics at Oxford University, who also took part in the Earth System Dynamics study.

“Considering the slow speed of large-scale political and economic transformations, decisive action is still warranted as the modest-action scenario is a large change compared to current emission rates,” he adds.

To likely limit global warming to 1.5°C in 2100, humanity would have to take strong climate action much sooner. We would only have until 2027 to start if we could increase the share of renewables at a rate of 5% a year. We have already passed the point of no return for the more modest climate-action scenario where the share of renewables increases by 2% each year. In this scenario, unless we remove carbon dioxide from the atmosphere, it is no longer possible to achieve the 1.5°C target in 2100 with a probability of 67%.

Removing greenhouse gases from the atmosphere, by using ‘negative emissions’ technology, could buy us a bit more time, according to the study. But even with strong negative emissions, humanity would only be able to delay the point of no return by 6 to 10 years.

“We hope that ‘having a deadline’ may stimulate the sense of urgency to act for politicians and policy makers,” concludes Dijkstra. “Very little time is left to achieve the Paris targets.”


Please mention the name of the publication (Earth System Dynamics) if reporting on this story and, if reporting online, include a link to the paper (https://www.earth-syst-dynam.net/9/1085/2018/) or to the journal website (https://www.earth-system-dynamics.net).

MORE INFORMATION
This research is presented in the paper ‘The Point of No Return for climate action: effects of climate uncertainty and risk tolerance’ to appear in the EGU open access journal Earth System Dynamics on 30 August 2018.

The work was funded in part by the Netherlands Ministry of Education, Culture and Science (grant 024.002.001).

The scientific article is available online, free of charge, from the publication date onwards, at https://www.earth-syst-dynam.net/9/1085/2018/ (this URL will redirect to the final, peer-reviewed paper after the embargo lifts). While the embargo lasts, a pre-print version of the final paper is available for download at https://www.egu.eu/news/428/deadline-for-climate-action-act-strongly-before-2035... (scroll down to the 'Media' section)

The study was conducted by Matthias Aengenheyster (Department of Physics, Oxford University , UK), Qing Yi Feng (Department of Physics and Centre for Complex System Studies, Utrecht University, the Netherlands), Frederick van der Ploeg (Department of Economics, Oxford University, UK) and Henk A. Dijkstra (Department of Physics and Centre for Complex Systems Studies, Utrecht University, the Netherlands).

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002 with headquarters in Munich, Germany. The EGU publishes a number of diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 14,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2019 General Assembly is taking place in Vienna, Austria, from 7 to 12 April 2019. For information and press registration, please check https://media.egu.eu closer to the time of the meeting, or follow the EGU on Twitter (@EuroGeosciences) and Facebook (European Geosciences Union).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) at least 24 hours in advance of public dissemination.

Earth System Dynamics (ESD) is an international scientific journal dedicated to the publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change. The overall behaviour of the Earth system is strongly shaped by the interactions among its various component systems, such as the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the inner Earth, but also by life and human activity. ESD solicits contributions that investigate these various interactions and the underlying mechanisms, ways how these can be conceptualised, modelled, and quantified, predictions of the overall system behaviour to global changes, and the impacts for its habitability, humanity, and future Earth system management by human decision making.

Wissenschaftliche Ansprechpartner:

Henk A. Dijkstra
Department of Physics and Centre for Complex Systems Studies, Utrecht University
Utrecht, the Netherlands
+31 30 253 2306
H.A.Dijkstra@uu.nl

Qingy Feng
Centre for Complex Systems Studies, Utrecht University
Utrecht, the Netherlands
+31 30 253 1019
Q.Feng@uu.nl

Rick van der Ploeg
Department of Economics, Oxford University
Oxford, UK
+44-1865-281-285 or +31-6-5235-8850
rick.vanderploeg@economics.ox.ac.uk (preferred)

Matthias Aengenheyster
Department of Physics, Oxford University
Oxford, UK
+44 1865 282 351
matthias.aengenheyster@physics.ox.ac.uk

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
+49-89-2180-6703
media@egu.eu
@EuroGeosciences

Originalpublikation:

Aengenheyster, M., Feng, Q. Y., van der Ploeg, F., and Dijkstra, H. A.: The point of no return for climate action: effects of climate uncertainty and risk tolerance, Earth Syst. Dynam., 9, 1085–1095, https://doi.org/10.5194/esd-9-1085-2018, 2018

Weitere Informationen:

http://www.egu.eu/news/428/deadline-for-climate-action-act-strongly-before-2035-... Release on the EGU website
http://www.earth-syst-dynam.net/9/1085/2018/ Scientific paper (the link will be active after the study is published on 30 August, 14:00 CEST; embargoed pre-print available at https://www.egu.eu/news/428/deadline-for-climate-action-act-strongly-before-2035...)
http://www.earth-system-dynamics.net/ Journal – Earth System Dynamics

Dr. Bárbara Ferreira | European Geosciences Union

More articles from Earth Sciences:

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht A precise chemical fingerprint of the Amazon
12.09.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>