Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damage, pollution from wildfires could surge as western U.S. warms

29.07.2009
By 2055, wildfires in the western United States could scorch about 50 percent more land than they do now, causing a sharp decline in the region's air quality, a new study predicts.

This potential leap in destructiveness and pollution--mainly from an increase in wildfire frequency--is forecast by computer models calculating impacts of moderate global warming on western U.S. wildfire patterns and atmospheric chemistry. As fires and smoke increase, the health of people living in the region could suffer, the study's authors say.

Atmospheric scientists at Harvard University who conducted the research report that their models show the greatest future increases in area burned (75 to 175 percent) in the forests of the Pacific Northwest and the Rocky Mountains. And, because of extra burning throughout the western U.S., one important type of smoke particle--organic carbon aerosols--would increase, on average, by about 40 percent during the roughly half-century period, they add.

Previous studies by other researchers have probed the links between climate change and fire severity in the West and elsewhere. However, the Harvard study represents the first attempt to quantify the impact of future wildfires on the air we breathe, says Jennifer Logan of Harvard's School of Engineering and Applied Sciences (SEAS), who led the research. A report on the results has been accepted for publication in the Journal of Geophysical Research - Atmospheres, a journal of the American Geophysical Union (AGU).

"Warmer temperatures can dry out underbrush, leading to a more serious conflagration once a fire is started by lightning or human activity," notes Logan.

"Because smoke and other particles from fires adversely affect air quality, an increase in wildfires could have large impacts on human health."

To conduct the research, the team first examined a 25-year record of observed meteorology and fire statistics to identify those meteorological factors that could best predict area burned for each ecosystem in the western United States. To see how these meteorological factors would change in the future, the researchers then next ran a global climate model out to 2055, following a scenario of future greenhouse gas emissions known as A1B. This scenario, one of several devised by the United Nations Intergovernmental Panel on Climate Change, describes a future world with rapid economic growth and balanced energy generation from fossil and alternative fuels. Relative to the other scenarios, it leads to a moderate warming of the earth's average surface temperature, about 1.6 degrees Celsius (3 degrees Fahrenheit) by 2050.

"By hypothesizing that the same relationships between meteorology and area burned still hold in the future, we then could predict wildfire activity and emissions from 2000 to the 2050's," explains Logan.

As a last step, the researchers used an atmospheric chemistry model to understand how the change in wildfire activity would affect air quality. This model, combining their predictions of areas burned with projected 2050s meteorology data, shows the quantities of emissions and the fates of smoke and other particles released by the future wildfires. The resulting diminished air quality could lead to smoggier skies and adversely affect those suffering from lung and heart conditions such as asthma and chronic bronchitis.

Such consequences are a "climate penalty" that diminishes the effectiveness of efforts to reduce air pollution across the United States, the researchers say. Their new work could help policymakers gauge how severe that penalty might become. In addition, the study underscores the need for a vigorous fire management plan.

The team next plans to focus on future wildfires and air quality over the densely populated areas in California and in the southwest United States.

Logan's collaborators include Research Associate Loretta Mickley and former postdocs Dominick Spracklen and Rynda Hudman, all at SEAS. Grants from the STAR (Science to Achieve Results) program of the National Center for Environmental Research of the U.S. Environmental Protection Agency and from NASA supported this research.

Title:
"Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous

aerosol concentrations in the western United States"

Authors:
Dominick V. Spracklen: School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts, USA; Now at School of Earth and
Environment, University of Leeds, Leeds, UK;
Loretta J. Mickley, Jennifer A. Logan, Rynda C. Hudman, Rosemarie Yevich: School
of Engineering and Applied Sciences, Harvard University, Cambridge,
Massachusetts, USA;
Michael D. Flannigan: Canadian Forest Service, Sault Ste. Marie, Ontario, Canada;

Anthony L. Westerling: University of California, Merced, California, USA.

Contact information for authors:
Jennifer A. Logan, Senior Research Fellow, 617-495-4582, jlogan@seas.harvard.edu
Loretta J. Mickley, Research Associate, 617-496-5635, mickley@fas.harvard.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>