Cutting carbon dioxide helps prevent drying

New research from Carnegie Global Ecology scientists Long Cao and Ken Caldeira offers a novel explanation for why climates are wetter when atmospheric carbon dioxide (CO2) concentrations are decreasing. Their findings, published online today by Geophysical Research Letters, show that cutting carbon dioxide concentrations could help prevent droughts caused by global warming.

Cao and Caldeira's new work shows that this precipitation increase is due to the heat-trapping property of the greenhouse gas carbon dioxide in the atmosphere. Carbon dioxide traps heat in the middle of the atmosphere. This warm air higher in the atmosphere tends to prevent the rising air motions that create thunderstorms and rainfall.

As a result, an increase in the atmospheric concentration of carbon dioxide tends to suppress precipitation. Similarly, a decrease in the atmospheric concentration of carbon dioxide tends to increase precipitation.

The results of this study show that cutting the concentration of precipitation-suppressing carbon dioxide in the atmosphere would increase global precipitation. This is important because scientists are concerned that unchecked global warming could cause already dry areas to get drier. (Global warming may also cause wet areas to get wetter.) Cao and Caldeira's findings indicate that reducing atmospheric carbon dioxide could prevent droughts caused by climate change.

“This study shows that the climate is going to be drier on the way up and wetter on the way down,” Caldeira said, adding:”Proposals to cool the earth using geo-engineering tools to reflect sunlight back to space would not cause a similar pulse of wetness.”

The team's work shows that carbon dioxide rapidly affects the structure of the atmosphere, causing quick changes precipitation, as well as many other aspects of Earth's climate, well before the greenhouse gas noticeably affects temperature. These results have important implications for understanding the effects of climate change caused by carbon dioxide, as well as the potential effects of reducing atmospheric carbon dioxide concentrations.

“The direct effects of carbon dioxide on precipitation take place quickly,” said Cao. “If we could cut carbon dioxide concentrations now, we would see precipitation increase within the year, but it would take many decades for climate to cool.”

Media Contact

Ken Caldeira EurekAlert!

More Information:

http://www.stanford.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors