Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curiosity confirms origins of Martian meteorites

17.10.2013
Earth’s most eminent emissary to Mars has just proven that those rare Martian visitors that sometimes drop in on Earth — a.k.a. Martian meteorites — really are from the Red Planet.

A key new measurement of Mars’ atmosphere by NASA’s Curiosity rover provides the most definitive evidence yet of the origins of Mars meteorites while at the same time providing a way to rule out Martian origins of other meteorites.


Martian meteorite
Scientists identified meteorites, such as this one nicknamed “Black Beauty,” as Martian in origin. NASA

The new measurement is a high-precision count of two forms of argon gas—Argon-36 and Argon-38–accomplished by the Sample Analysis at Mars (SAM) instrument on Curiosity. These lighter and heavier forms, or isotopes, of argon exist naturally throughout the solar system. But on Mars the ratio of light to heavy argon is skewed because a lot of that planet’s original atmosphere was lost to space, with the lighter form of argon being taken away more readily because it rises to the top of the atmosphere more easily and requires less energy to escape. That’s left the Martian atmosphere relatively enriched in the heavier Argon-38.

Years of past analyses by Earth-bound scientists of gas bubbles trapped inside Martian meteorites had already narrowed the Martian argon ratio to between 3.6 and 4.5 (that is 3.6 to 4.5 atoms of Argon-36 to every one Argon-38) with the supposed Martian “atmospheric” value near four. Measurements by NASA’s Viking landers in the 1970’s put the Martian atmospheric ratio in the range of four to seven. The new SAM direct measurement on Mars now pins down the correct argon ratio at 4.2.

“We really nailed it,” said Sushil Atreya of the University of Michigan, Ann Arbor, the lead author of a paper reporting the finding today in Geophysical Research Letters, a journal of the American Geophysical Union. “This direct reading from Mars settles the case with all Martian meteorites,” he said.

One of the reasons scientists have been so interested in the argon ratio in Martian meteorites is that it was – before Curiosity – the best measure of how much atmosphere Mars has lost since the planet’s earlier, wetter, warmer days billions of years ago. Figuring out the planet’s atmospheric loss would enable scientists to better understand how Mars transformed from a once water-rich planet more like our own to the today’s drier, colder and less hospitable world.

Had Mars held onto its entire atmosphere and its original argon, Atreya explained, its ratio of the gas would be the same as that of the Sun and Jupiter. They have so much gravity that isotopes can’t preferentially escape, so their argon ratio – which is 5.5 – represents that of the primordial solar system.

While argon comprises only a tiny fraction of the gases lost to space from Mars, it is special because it’s a noble gas. That means the gas is inert, not reacting with other elements or compounds, and therefore a more straightforward tracer of the history of the Martian atmosphere.

“Other isotopes measured by SAM on Curiosity also support the loss of atmosphere, but none so directly as argon,” said Atreya. “Argon is the clearest signature of atmospheric loss because it’s chemically inert and does not interact or exchange with the Martian surface or the interior. This was a key measurement that we wanted to carry out on SAM.”

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Curiosity mission for NASA’s Science Mission Directorate, Washington. The SAM investigation on the rover is managed by NASA Goddard Space Flight Center, Greenbelt, Md.

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this early view article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2013GL057763/abstract

Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at tsumner@agu.org. Please provide your name, the name of your publication, and your phone number.

Title

“Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity, and implications for atmospheric loss”

Sushil K. Atreya and Michael H. Wong
Department of Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, Mich.;
Melissa G. Trainer, Heather B. Franz, Charles A. Malespin, Paul R. Mahaffy, Pamela G. Conrad and Anna E.
Brunner
Goddard Space Flight Center, Greenbelt, Md.;
K. Manning
Concordia College, Moorhead, Minn.;
Laurie A. Leshin
School of Science, Rensselaer Polytechnic Institute, Troy, N.Y.;
John H. Jones
NASA Johnson Space Center, Houston, Tx.;
Christopher R. Webster
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif.;
Tobias C. Owen
University of Hawaii, Honolulu, Hawaii;
Robert O. Pepin
University of Minnesota, Minneapolis, Minn.;
R. Navarro-González
Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado, México.

Contact information for the authors:

Sushil Atreya, Phone: +1 (734) 936-0489, Email: atreya@umich.edu

Media Contacts

Peter Weiss
Public Information Manager
Phone: +1 202 777 7507
E-mail: Pweiss@agu.org
Joan Buhrman
Strategic Communications Manager
Phone: +1 202 777 7509
E-mail: JBuhrman@agu.org
Mary Catherine Adams
Public Information Specialist
Phone: +1 202 777 7530
E-mail: MCAdams@agu.org
Phone: +1 (800) 966 2481
(Toll free in North America)
Fax: +1 202 328 0566

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://news.agu.org/press-release/curiosity-confirms-origins-of-martian-meteorites/

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>