Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracks herald the calving of a large iceberg from Petermann Glacier

06.02.2019

AWI researchers have observed an increased flow speed on the glacier and predict a further acceleration if a calving event occurs

Cracks in the floating ice tongue of Petermann Glacier in the far northwest reaches of Greenland indicate the pending loss of another large iceberg.


Petermann Glacier, Greenland: south-western shear-margin of the floating glacier within 10 km of the calving front. (Photo: Andreas Muenchow, University of Delaware)


Left: ASTER (https://asterweb.jpl.nasa.gov/) satellite scene acquired shortly after the 2012 calving event on 2012/07/21. Right: Sentinel-2 (https://scihub.copernicus.eu/) acquisition on 2018/07/31 indicating newly developing fractures in the terminus region. (Photo: ASTER; Sentinel-2)

As glaciologists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) report in a new study, the glacier’s flow rate has increased by an average of 10 percent since the calving event in 2012, during which time new cracks have also formed – a quite natural process.

However, the experts’ model simulations also show that, if these ice masses truly break off, Petermann Glacier’s flow rate will likely accelerate further and transport more ice out to sea, with corresponding effects on the global sea level. The study was recently released in the “Journal of Geophysical Research: Earth Surface” and is freely available.

Located in the outermost northwest corner of Greenland, Petermann Glacier is one of the most prominent glaciers in the region: partly because its catchment encompasses four percent of the Greenland Ice Sheet, and partly because it is one of only three glaciers in Greenland with a floating ice tongue.

That tongue currently extends roughly 70 kilometres into Petermann Fjord. Cracks 12 kilometres above the previous glacier edge indicate that, in the near future, another major iceberg could calve from Petermann Glacier.

Glaciologists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in Bremerhaven came to this conclusion after analysing satellite imagery of the glacier from the past ten years.

“The satellite data shows that Petermann Glacier had a flow speed of roughly 1135 metres per year in the winter of 2016. That equates to an acceleration of about 10 percent in comparison to the winter of 2011, and we asked ourselves what was responsible for the increased speed,” explains AWI glaciologist and co-author Niklas Neckel.

Fjord sidewalls serve as stabilizing effect to the glacier

The researchers subsequently simulated the glacier’s observed ice transport in a computer model and were able to confirm that the loss of a large iceberg in August 2012 is what triggered the acceleration.

“On their way to the sea, the glacier’s ice masses rub along the rock walls that enclose the fjord to the left and right. If a major iceberg breaks away from the end of the glacier’s tongue, it will reduce the tongue’s overall length, and with it, the route along which the ice masses scrape against the stone. This in turn limits the walls’ braking effect, so that the glacier begins flowing faster,” explains AWI ice modeller and first author Martin Rückamp.

The computer model predicts that a new calving event would produce a similar acceleration. “We can’t predict when Petermann Glacier will calve again, or whether a calving event would actually calve along the cracks we identified in the ice tongue,” says Rückamp. “But we can safely assume that, if it does come to a new calving event, the tongue will retreat considerably, and the rock’s stabilizing effect will further decline.”

An effect of climate change?

To what extent Petermann Glacier’s accelerated ice transport is due to various global warming impacts is a question that the experts haven’t yet investigated in depth. “We now know that the loss of icebergs increases the glacier’s flow rate. In addition, we’ve observed that calving events on Petermann Glacier are happening more frequently.

But the question of whether these changes are due to the warming atmosphere over Greenland, or to warmer seawater, isn’t an aspect that we could investigate using the satellite data,” says Niklas Neckel. Nevertheless, the experts consider the acceleration of Petermann Glacier to be an important signal. Unlike the glaciers in southeast and southwest Greenland, those in the island’s northern reaches have remained largely stable; now that appears to have changed.

Since 2002, the Greenland Ice Sheet and the island’s glaciers have lost an average of 286 billion tonnes of ice per year. This loss of mass is above all due to intensified surface melting in the summer. Iceberg calving has also increased: Greenland’s glaciers are now losing a forth more ice in the form of calving events than in the comparison period (1960 to 1990).

Potential causes include warmer ocean currents, which melt the glaciers’ floating tongues from below; and meltwater, which percolate into cracks and crevasses until it reaches the glacier bed, where it acts like a lubricant, causing ice flows to accelerate. The total annual global sea-level rise is ca. 3.3 millimetres, of which the loss of ice on Greenland is currently contributing ca. 0.7 millimetres.

Notes to Editors:

The study is available as an Open Access article in the AGU magazine “Journal of Geophysical Research: Earth Surface” under the original title below:
Martin Rückamp, Niklas Neckel, Sophie Berger, Angelika Humbert, Veit Helm: Calving Induced Speedup of Petermann Glacier, https://doi.org/10.1029/2018JF004775

Printable images and graphics are available at: https://www.awi.de/en/about-us/service/press/press-release/cracks-herald-the-cal...

Your academic contact partners at the Alfred Wegener Institute are:

• Dr Martin Rückamp (Tel.: +49 (0)471 4831-1956; e-mail: Martin.Rueckamp(at)awi.de)
• Dr Niklas Neckel (Tel.: +49 (0)471) 4831-1345; e-mail: Niklas.Neckel(at)awi.de)
• Prof Angelika Humbert (Tel.: +49(0)471 4831-1834; e-mail: Angelika.Humbert(at)awi.de)

At the AWI’s Communications and Media Relations department, Folke Mehrtens (Tel.: +49 (0)471 4831-2007; e-mail: media(at)awi.de) will be pleased to help you with any questions.

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 19 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Originalpublikation:

https://doi.org/10.1029/2018JF004775

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/
https://www.awi.de/en/about-us/service/press/press-release/cracks-herald-the-calving-of-a-large-iceberg-from-petermann-glacier.html

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>