Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracks herald the calving of a large iceberg from Petermann Glacier

06.02.2019

AWI researchers have observed an increased flow speed on the glacier and predict a further acceleration if a calving event occurs

Cracks in the floating ice tongue of Petermann Glacier in the far northwest reaches of Greenland indicate the pending loss of another large iceberg.


Petermann Glacier, Greenland: south-western shear-margin of the floating glacier within 10 km of the calving front. (Photo: Andreas Muenchow, University of Delaware)


Left: ASTER (https://asterweb.jpl.nasa.gov/) satellite scene acquired shortly after the 2012 calving event on 2012/07/21. Right: Sentinel-2 (https://scihub.copernicus.eu/) acquisition on 2018/07/31 indicating newly developing fractures in the terminus region. (Photo: ASTER; Sentinel-2)

As glaciologists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) report in a new study, the glacier’s flow rate has increased by an average of 10 percent since the calving event in 2012, during which time new cracks have also formed – a quite natural process.

However, the experts’ model simulations also show that, if these ice masses truly break off, Petermann Glacier’s flow rate will likely accelerate further and transport more ice out to sea, with corresponding effects on the global sea level. The study was recently released in the “Journal of Geophysical Research: Earth Surface” and is freely available.

Located in the outermost northwest corner of Greenland, Petermann Glacier is one of the most prominent glaciers in the region: partly because its catchment encompasses four percent of the Greenland Ice Sheet, and partly because it is one of only three glaciers in Greenland with a floating ice tongue.

That tongue currently extends roughly 70 kilometres into Petermann Fjord. Cracks 12 kilometres above the previous glacier edge indicate that, in the near future, another major iceberg could calve from Petermann Glacier.

Glaciologists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in Bremerhaven came to this conclusion after analysing satellite imagery of the glacier from the past ten years.

“The satellite data shows that Petermann Glacier had a flow speed of roughly 1135 metres per year in the winter of 2016. That equates to an acceleration of about 10 percent in comparison to the winter of 2011, and we asked ourselves what was responsible for the increased speed,” explains AWI glaciologist and co-author Niklas Neckel.

Fjord sidewalls serve as stabilizing effect to the glacier

The researchers subsequently simulated the glacier’s observed ice transport in a computer model and were able to confirm that the loss of a large iceberg in August 2012 is what triggered the acceleration.

“On their way to the sea, the glacier’s ice masses rub along the rock walls that enclose the fjord to the left and right. If a major iceberg breaks away from the end of the glacier’s tongue, it will reduce the tongue’s overall length, and with it, the route along which the ice masses scrape against the stone. This in turn limits the walls’ braking effect, so that the glacier begins flowing faster,” explains AWI ice modeller and first author Martin Rückamp.

The computer model predicts that a new calving event would produce a similar acceleration. “We can’t predict when Petermann Glacier will calve again, or whether a calving event would actually calve along the cracks we identified in the ice tongue,” says Rückamp. “But we can safely assume that, if it does come to a new calving event, the tongue will retreat considerably, and the rock’s stabilizing effect will further decline.”

An effect of climate change?

To what extent Petermann Glacier’s accelerated ice transport is due to various global warming impacts is a question that the experts haven’t yet investigated in depth. “We now know that the loss of icebergs increases the glacier’s flow rate. In addition, we’ve observed that calving events on Petermann Glacier are happening more frequently.

But the question of whether these changes are due to the warming atmosphere over Greenland, or to warmer seawater, isn’t an aspect that we could investigate using the satellite data,” says Niklas Neckel. Nevertheless, the experts consider the acceleration of Petermann Glacier to be an important signal. Unlike the glaciers in southeast and southwest Greenland, those in the island’s northern reaches have remained largely stable; now that appears to have changed.

Since 2002, the Greenland Ice Sheet and the island’s glaciers have lost an average of 286 billion tonnes of ice per year. This loss of mass is above all due to intensified surface melting in the summer. Iceberg calving has also increased: Greenland’s glaciers are now losing a forth more ice in the form of calving events than in the comparison period (1960 to 1990).

Potential causes include warmer ocean currents, which melt the glaciers’ floating tongues from below; and meltwater, which percolate into cracks and crevasses until it reaches the glacier bed, where it acts like a lubricant, causing ice flows to accelerate. The total annual global sea-level rise is ca. 3.3 millimetres, of which the loss of ice on Greenland is currently contributing ca. 0.7 millimetres.

Notes to Editors:

The study is available as an Open Access article in the AGU magazine “Journal of Geophysical Research: Earth Surface” under the original title below:
Martin Rückamp, Niklas Neckel, Sophie Berger, Angelika Humbert, Veit Helm: Calving Induced Speedup of Petermann Glacier, https://doi.org/10.1029/2018JF004775

Printable images and graphics are available at: https://www.awi.de/en/about-us/service/press/press-release/cracks-herald-the-cal...

Your academic contact partners at the Alfred Wegener Institute are:

• Dr Martin Rückamp (Tel.: +49 (0)471 4831-1956; e-mail: Martin.Rueckamp(at)awi.de)
• Dr Niklas Neckel (Tel.: +49 (0)471) 4831-1345; e-mail: Niklas.Neckel(at)awi.de)
• Prof Angelika Humbert (Tel.: +49(0)471 4831-1834; e-mail: Angelika.Humbert(at)awi.de)

At the AWI’s Communications and Media Relations department, Folke Mehrtens (Tel.: +49 (0)471 4831-2007; e-mail: media(at)awi.de) will be pleased to help you with any questions.

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 19 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Originalpublikation:

https://doi.org/10.1029/2018JF004775

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/
https://www.awi.de/en/about-us/service/press/press-release/cracks-herald-the-calving-of-a-large-iceberg-from-petermann-glacier.html

More articles from Earth Sciences:

nachricht NASA analyzes Tropical Cyclone Cristina's water vapor concentration
09.07.2020 | NASA/Goddard Space Flight Center

nachricht In the Arctic, spring snowmelt triggers fresh CO2 production
06.07.2020 | San Diego State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>