Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could we cool the Earth with an ice-free Arctic?

10.12.2019

The Arctic region is heating up faster than any other place on Earth, and as more and more sea ice is lost every year, we are already feeling the impacts. IIASA researchers explored strategies for cooling down the oceans in a world without this important cooling mechanism.

Scientists estimate that summer sea ice in the Arctic Ocean will be largely gone within a generation. This is bad news for the world, as ice and snow reflect a high proportion of the sun's energy into space, thus keeping the planet cool.


As the Arctic loses snow and ice, bare rock and water become exposed and absorb more and more of the sun’s energy, making it warmer – a process known as the albedo effect.

Given that it would be very difficult to reverse this trend, even if we do manage to reach the 1.5°C target set out in the Paris Agreement, IIASA researchers explored what would happen if we were to reverse this logic and make the Arctic region a net contributor to cooling down the world’s oceans and by extension the Earth.

In their new paper published in the Springer journal SN Applied Sciences, the authors analyzed what the Arctic’s contribution to global warming would be if there were no ice cover, even throughout the winter months. They also looked at ways the world could adapt to the resulting new climate conditions.

“The Arctic Ocean ice cover works as a strong insulator, impeding the heat from the ocean below to warm up the atmosphere above. If this ice layer were however removed, the atmosphere would increase in temperature by around 20°C during the winter. This increase in temperature would in turn increase the heat irradiated into space and, thus cooling down the oceans,” explains study lead-author Julian Hunt, who currently holds a postdoc fellowship at IIASA.

According to the authors, the main factor that contributes to maintaining the Arctic sea ice cover is the fact that the superficial Arctic Ocean (the top 100 meters) has a salinity that is around 5 grams per liter (g/l) lower than that of the Atlantic Ocean.

This stops the Atlantic Ocean from flowing above the cold Arctic waters. The authors argue that increasing the salinity of the Arctic Ocean surface would allow the warmer and less salty North Atlantic Ocean current to flow over the surface of the Arctic Ocean, thereby considerably increasing the temperature of the Arctic atmosphere, and releasing the ocean heat trapped under the ice. The researchers propose three strategies to achieve this:

The first strategy entails reducing the flow of water from major rivers from Russia and Canada into the Arctic, by pumping the water to regions in the USA and Central Asia where it could be used to increase agricultural production in regions with low water availability.

As a second strategy, the researchers suggest creating submerged barriers in front of Greenland glaciers to reduce the melting of the Greenland ice sheets, while the third strategy would be to pump water from the superficial Arctic Ocean to the deep ocean so that it is mixed with the more salty water below. The pumps in such a project would run on electricity generated from intermittent solar and wind sources, allowing a smoother implementation of these technologies.

The researchers’ analysis show that with an average 116 GW of energy during 50 years of operation, these strategies could reduce the salinity of the Superficial Arctic Ocean waters to 2g/l. This would increase the flow of the North Atlantic current into the Arctic and considerably reduce the ice cover on the Arctic during the winter.

Despite the concerns about the loss of sea ice in the Arctic the authors point out that there are several advantages to an ice-free Arctic scenario: Ships would for example be able to navigate through the Arctic Ocean throughout the whole year, which would reduce the distance for shipping goods from Asia to Europe and North America.

In addition, the temperature in the Arctic would increase during the winter months, which would reduce the demand for heating in Europe, North America, and Asia during the winter. The frequency and intensity of hurricanes in the Atlantic Ocean could also be reduced due to the reduction in temperature in Atlantic Ocean waters. On top of this, the ice-free waters could also help to absorb more CO2 from the atmosphere.

Hunt however cautions that while there are benefits to an ice-free Arctic, it is difficult to predict what the impact will be on global sea levels, as the higher Arctic temperatures would result in increased melting of the Greenland ice sheet. It is also difficult to predict the changes in the world climate as the polar circle will be considerably weakened during the winter.

“Although it is important to mitigate the impacts from climate change with the reduction in CO2 emissions, we should also think of ways to adapt the world to the new climate conditions to avoid uncontrollable, unpredictable and destructive climate change resulting in socioeconomic and environmental collapse. Climate change is a major issue and all options should be considered when dealing with it,” Hunt concludes.

Reference
Hunt J, Nascimento A, Diuana F, de Assis Brasil Weber N, Castro G, Chaves A, Mesquita A, Colling A, & Schneider P (2019). Cooling down the world oceans and the earth by enhancing the North Atlantic Ocean current. SN Applied Sciences DOI: 10.1007/s42452-019-1755-y

Ansa Heyl | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

Further reports about: Arctic Ocean Atlantic Atmosphere Greenland ice IIASA ice cover oceans sea ice

More articles from Earth Sciences:

nachricht NASA, NOAA analyses reveal 2019 second warmest year on record
16.01.2020 | NASA/Goddard Space Flight Center

nachricht New assessment of gas locked in ice in European waters
16.01.2020 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>