Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coral dating method hints at possible future sea-level changes

12.09.2011
New evidence of sea-level oscillations during a warm period that started about 125,000 years ago raises the possibility of a similar scenario if the planet continues its more recent warming trend, says a research team led by the Woods Hole Oceanographic Institution (WHOI).

In a paper published online in the Sept. 11 Nature Geoscience, the researchers report data from an improved method of dating fossil coral reef skeletons in the Bahamas. By calculating more accurate ages for the coral samples than previously possible, they found that sea levels were considerably less stable than earlier believed--oscillating up and down by 4 to 6 meters (13-20 feet) over a few thousand years about 120,000 years ago during a period known as the Last Interglacial.

"This was the last time that climate was as warm as—or warmer than—today," said WHOI geochronologist William G. Thompson, lead author of the study. "If today's ice sheets continue to melt, we may be headed for a period of ice sheet and sea-level change that is more dynamic than current observations of ice sheets suggest."

The polar ice caps currently are shrinking and sea level is rising at a rate of about 30 centimeters (one foot) per century. "How much sea level will rise over the next century or two is a crucial question for the significant part of the world's population that lives in coastal zones," Thompson said.

A better understanding of sea-level change in the past can help to inform predictions for the future. Historical records such as those from tide gauges extend back only a century or so. "The geological record offers a longer perspective on rates of change," Thompson said, "and sea-level changes during previous warm intervals are especially relevant to today's situation." Sea levels during the Last Interglacial are known to have been about 6 meters (20 feet) higher, on average, than they are today. "The real surprise is that sea levels were oscillating during this period."

To get more accurate age estimates from the geological record, Thompson developed an advanced way of interpreting the uranium and thorium isotope ratios that have been traditionally used as a coral dating method. Until now, scientists attempting to date Last Interglacial coral reefs concluded erroneously that sea level was relatively stable during this period. "Our analysis of Last Interglacial fossil reef ages represents a breakthrough in our understanding of U-Th coral dating, leading to improved chronologies of past sea-level change," Thompson said.

Thompson teamed up with colleagues H. Allen Curran and Brian White of Smith College, and Mark A. Wilson of the College of Wooster, experts on the key Bahamas fossil coral sites. "The geologic evidence for sea-level change at these sites is convincing," said Curran, "but we couldn't absolutely prove sea-level oscillation without more precise dating."

Because coral reefs grow near the sea surface, they are accurate markers of former sea levels. Two fossil reefs are evident at the Bahamas sites, separated by an erosional surface that was cut by wave action. The first reef grew when sea levels were about 4 meters (13 feet) higher than today. "The fall of sea-level is indicated by the wave-cut erosion of this first reef," said Wilson, "and the second sea-level rise was recorded by the growth of new corals on this eroded surface. The dating of fossil corals below and above this erosional surface, using our new methods, reveals important details about the timing of sea-level change that were previously obscured."

The finding of a significant sea-level oscillation 120,000 years ago is in sharp contrast to the last 5,000 years, where sea level has been relatively stable. "It appears that the smaller ice sheets of the Last Interglacial were significantly less stable than today's ice sheets," Thompson said.

Should the current warming trend continue, Thompson said, a scenario similar to that of the Last Interglacial could result. "Variable sea level during the Last Interglacial points to instability in the polar ice sheets, which were somewhat smaller than today. If changing climate leads to smaller ice sheets in the future, this may provoke similar instability."

The work was supported by the WHOI Ocean and Climate Change Institute, the Comer Science and Education Foundation, and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>