Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool roofs in China offer enhanced benefits during heat waves

23.12.2015

New Berkeley Lab study uses regional climate model to compare heat waves to normal summer conditions

It is well established that white roofs can help mitigate the urban heat island effect, reflecting the sun's energy back into space and reducing a city's temperature under normal weather conditions. In a new study of Guangzhou, China, Lawrence Berkeley National Laboratory (Berkeley Lab) researchers working with Chinese scientists found that during a heat wave, the effect is significantly more pronounced.


The greater urban area of Guangzhou is outlined in the center of each figure. A midday urban heat island effect is clearly visible. The results of increased roof albedos are shown in the bottom row.

Credit: Berkeley Lab

Using a regional climate model combined with an urban model that allowed researchers to adjust roof reflectance, they found that the average urban midday temperature was lowered by 1.2 degrees Celsius (2.2 degrees Fahrenheit) during heat waves, or 50 percent more than the 0.8 degrees Celsius reduction for typical summer conditions.

The study, "Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions," was published recently in the journal Environmental Science & Technology. The authors were Berkeley Lab researchers Dev Millstein, Ronnen Levinson, and Pablo Rosado; and Meichun Cao and Zhaohui Lin of the Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing.

"The hotter it is, the more cooling you get with cool roofs--and it is a significant difference, compared to the margin of error," said Millstein. "We found that the stagnant conditions of a heat wave, where the air is just sitting over the city, was one of the main factors."

Reflective roofs, also called cool roofs, save energy by keeping buildings cooler, thus reducing the need for air conditioning. Hot surfaces such as dark roofs that warm the outside air contribute to the urban heat island effect. Previous Berkeley Lab research in China found that cool roofs could substantially reducing energy use and greenhouse gas emissions in climate zones with hot summers.

The reasons for studying heat waves have to do with both health and energy. "That's when reducing the hottest temperatures can have the most health benefit," Millstein said. "It's also when the electric grid is the most stressed. Air conditioners are running at full speed and with no break, so a small change on the margin can have a bigger impact."

In addition to reducing city temperatures more during a heat wave, the researchers also found that cool roofs can decrease the intensity of the urban heat island effect more during extreme conditions. "Looking at the average difference in temperature between every grid cell in the city and the adjacent rural area, cool roofs had a more dramatic effect during heat waves," Millstein said.

Guangzhou is a sprawling megacity in southern China, near Hong Kong, with a population of more than 8.5 million. Researchers simulated conditions from six of the strongest historical heat waves over the last decade, and compared them to 25 typical summer weeks between 2004 and 2008.

For the purposes of the study, the researchers made all the roofs in the city as reflective as an aged white roof. While it is unlikely that will ever occur, it was necessary to have a statistically significant signal. A government policy, Millstein said, would likely be necessary to encourage use of cool roofs.

"It wouldn't have to be all at once, just as they're replaced," he said. "That's one of the reasons we think so much about cool roofs--because it's free or inexpensive to put a cool roof on when you're putting a new roof on anyway."

###

The research was funded by DOE's Building Technologies Office, through the U.S.-China Clean Energy Research Center Building Energy Efficiency (CERC-BEE), the Chinese Academy of Sciences, and the National Natural Science Foundation of China. The researchers used the computing facilities of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Julie Chao
jhchao@lbl.gov
510-486-6491

 @BerkeleyLab

http://www.lbl.gov 

Julie Chao | EurekAlert!

Further reports about: Cool roofs Energy Research heat waves temperature waves

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>