Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continuous satellite monitoring of ice sheets needed to better predict sea-level rise

15.07.2013
The findings, published in Nature Geoscience, underscore the need for continuous satellite monitoring of the ice sheets to better identify and predict melting and the corresponding sea-level rise.

The ice sheets covering Antarctica and Greenland contain about 99.5 per cent of the Earth's glacier ice which would raise global sea level by some 63m if it were to melt completely. The ice sheets are the largest potential source of future sea level rise – and they also possess the largest uncertainty over their future behaviour.

They present some unique challenges for predicting their future response using numerical modelling and, as a consequence, alternative approaches have been explored. One common approach is to extrapolate observed changes to estimate their contribution to sea level in the future.

Since 2002, the satellites of the Gravity Recovery and Climate Experiment (GRACE) detect tiny variations in Earth's gravity field resulting from changes in mass distribution, including movement of ice into the oceans. Using these changes in gravity, the state of the ice sheets can be monitored at monthly intervals.

Dr Bert Wouters, currently a visiting researcher at the University of Colorado, said: "In the course of the mission, it has become apparent that ice sheets are losing substantial amounts of ice – about 300 billion tonnes each year – and that the rate at which these losses occurs is increasing. Compared to the first few years of the GRACE mission, the ice sheets' contribution to sea level rise has almost doubled in recent years."

Yet, there is no consensus among scientists about the cause of this recent increase in ice sheet mass loss observed by satellites. Beside anthropogenic warming, ice sheets are affected by many natural processes, such as multi-year fluctuations in the atmosphere (for example, shifting pressure systems in the North Atlantic, or El Niño and La Niña events) and slow changes in ocean currents.

"So, if observations span only a few years, such 'ice sheet weather' may show up as an apparent speed-up of ice loss which would cancel out once more observations become available," Dr Wouters said.

The team of researchers compared nine years of satellite data from the GRACE mission with reconstructions of about 50 years of mass changes to the ice sheets. They found that the ability to accurately detect an accelerating trend in mass loss depends on the length of the record.

At the moment, the ice loss detected by the GRACE satellites is larger than what we would expect to see just from natural fluctuations, but the speed-up of ice loss over the last years is not.

The study suggests that although there may be almost enough satellite data to detect a speed-up in mass loss of the Antarctic ice sheet with a reasonable level of confidence, another ten years of satellite observations is needed to do so for Greenland. As a result, extrapolation of the current contribution to sea-level rise of the ice sheets to 2100 may be too high or low by as much as 35 cm. The study, therefore, urges caution in extrapolating current measurements to predict future sea-level rise.

Paper

'Limits in detecting acceleration of ice sheet mass loss due to climate variability' by B.Wouters, J. L. Bamber, M. R. van den Broeke, J. T. M. Lenaerts and I. Sasgen in Nature Geoscience

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>