Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorado State University scientist simplifies aerosols for modeling

27.05.2010
The large number of tiny organic aerosols floating in the atmosphere – emitted from tailpipes and trees alike – share enough common characteristics as a group that scientists can generalize their makeup and how they change in the atmosphere.

The groundbreaking research by Colette Heald, assistant professor in the Department of Atmospheric Science at Colorado State University, was highlighted this month on the cover of the American Geophysical Union’s prestigious Geophysical Research Letters.

“The hope is that we can start to accurately represent organic aerosols in climate models so we can address how they impact climate and air quality, and particularly the issue of how much is natural and how much comes from human activities,” Heald said. “What we’re really trying to get at is the composition – what’s in the atmosphere, how is it changing and where does it have an environmental impact? Many of the compounds in the atmosphere are really short lived, so the picture changes quickly.”

The atmosphere contains many different kinds of aerosols such as dust and sulfate as well as organic aerosols. These organic aerosols come from many different sources, including fossil fuel emission and wildfires. Fungi, bacteria and pollen are among the major biologically produced organic aerosol particles. Further complicating the picture are atmospheric gases that change over time and can become aerosols in the atmosphere.

But for climate models, the differences may not matter as much as previously thought.

Heald plotted hydrogen-to-carbon and oxygen-to-carbon ratios from observations of aerosols in the laboratory and in field experiments from such places as Mexico City, the Amazon and Los Angeles. Even though the studies looked at different aerosols from very different environments, she could classify them as a group based on their overall oxygen and hydrogen content.

Oxygen also plays a role in changing the chemical makeup of aerosols. The longer aerosols have been in the atmosphere, the more their composition has been altered– a process called oxidation.

As a result, the observed differences Heald found are plotted along a trajectory – from the freshest, most recent emissions from a diesel truck, for example, to particles that have been in the atmosphere for several days.

“In recent years, we’ve realized there are thousands and thousands of different organic species in the atmosphere,” Heald said. “With this study, we’ve found a simple way to describe all that complexity.”

“It’s still very important that we understand the different individual species in our atmosphere, but from a modeling perspective, it gives us hope we can simplify our entire description of organic aerosol composition.”

Heald’s collaborators included Jesse Kroll, a civil and environmental engineering professor at the Massachusetts Institute of Technology, and scientists at the University of Colorado, the Cooperative Institute for Research in Environmental Sciences, Harvard University and the Universidade de Sao Paulo in Sao Paulo, Brazil.

Emily Wilmsen | EurekAlert!
Further information:
http://www.colostate.edu

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>