Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal erosion in the Arctic intensifies global warming

10.09.2018

Sea level rise in the past led to the release of greenhouse gases from permafrost

The loss of arctic permafrost deposits by coastal erosion could amplify climate warming via the greenhouse effect. A study using sediment samples from the Sea of Okhotsk on the eastern coast of Russia led by AWI researchers revealed that the loss of Arctic permafrost at the end of the last glacial period led to repeated sudden increases in the carbon dioxide concentration in the atmosphere.


AWI permafrost scientists investigate the eroding coastline at the Siberian Bykovsky peninsula.

Copyright: Alfred-Wegener-Institut / Guido Grosse

Today, the exact magnitude of the future increase in greenhouse gas concentrations remains unknown. This is partly due to the fact that carbon dioxide is not only produced by humans burning gas, coal and oil; it can also find its way into the atmosphere as a result of natural environmental processes.

The positive feedback between warming and the release of ever increasing amounts of carbon dioxide from natural sources is a particular threat. In order to enable a better assessment of whether, and how, such developments are possible, climate researchers study records from the past to find evidence of these events.

Researchers from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) together with colleagues from Copenhagen and Zurich have now found evidence of this phenomenon for the Arctic permafrost regions. As the authors report in the journal Nature Communications, through their investigations along the coast of the Sea of Okhotsk in eastern Russia, they were able to show that several thousand years ago large quantities of carbon dioxide were released from Arctic permafrost – due to a rapid rise of sea level.

Permafrost is ground that remains frozen year round down to depths of up to several hundred metres, some since the last glacial period 20,000 years ago or even longer. Like a giant freezer, permafrost soils preserve huge quantities of dead biomass, mainly plant remains. When the permafrost thaws, bacteria start degrading the ancient biomass, and their metabolisms release the greenhouses gases carbon dioxide and methane.

We now know that about 11,500, 14,600 and 16,500 years ago, significant and sudden rises in the carbon dioxide level in the atmosphere occurred, but the reasons for these three rapid fluctuations remain poorly understood. In order to investigate the causes, a group of researchers led by AWI geologists Dr Maria Winterfeld and Prof Dr Gesine Mollenhauer set off for the Sea of Okhotsk.

“Originally we assumed that at the time, the vast Amur River carried tremendous quantities of plant material from the hinterland, which microorganisms in the water then broke down into carbon dioxide. So we collected sediment samples from the sea floor, which we then analysed.”

The findings were surprising: deep in the sediment, the researchers found evidence of plant remains that had been deposited on the sea floor. These were several thousand years older than the surrounding deposits, which made it clear that they must have originated in extremely old permafrost that for some reason had suddenly thawed. Particularly large amounts of these plant remains were washed into the sea 11,500, 14,600 and 16,500 years ago. But the Amur’s discharge rate was not significantly higher at those times.

Gesine Mollenhauer and her team found the solution to this puzzle when they looked at the changes in sea level since the last glacial period. About 11,500 and 14,600 years ago, particularly intense melting of the ice-sheets led to what are known as meltwater pulses – and each time the sea level rose by up to 20 metres within a few centuries.

“We assume that this resulted in severe erosion of the permafrost coast in the Sea of Okhotsk and the North Pacific – a phenomenon that we can observe in the Arctic today.” This allowed large amounts of several-thousand-year-old plant remains to enter the ocean, some of which were broken down into carbon dioxide by bacteria or deposited in the ocean floor.

To determine whether such permafrost erosion could indeed have been a key factor in increases in the global carbon dioxide concentration, AWI colleague Dr Peter Köhler used a computer model to simulate the global carbon cycle. By estimating the area of permafrost lost to the sea at the time, he obtained data on the likely amount of carbon dioxide released. The results are eye opening: 11,500 and 14,600 years ago, erosion of Arctic permafrost probably contributed to about 50 percent of the carbon dioxide increase, and 16,500 years ago to about a quarter.

The AWI team has thus revealed a process that could become reality in the future. Today the Arctic’s permafrost coast is eroding severely because the region is warming rapidly – in some places the coast is receding at a rate of 20 metres per year. As Gesine Mollenhauer explains: “Our findings show that this coastal erosion is an important process, but to date it has not been sufficiently considered in climate models. Such effects need to be included in future models.”

Notes for Editors:

Printable images are available via our media centre until the embargo is lifted: http://multimedia.awi.de/medien/pincollection.jspx?collectionName=%7B3f9ece46-85... and after the embargo period they will be available in the online version of this press release at: https://www.awi.de/nc/en/about-us/service/press.html

Your contact persons are:
- Prof. Dr Gesine Mollenhauer, tel.: +49 471 4831-2456; e-mail: Gesine.Mollenhauer(at)awi.de
- Dr Peter Köhler: tel.: +49 471 4831-1687; e-mail: Peter.Koehler(at)awi.de
- and Dr Folke Mehrtens, Communications Dept., tel.: +49 471 4831-2007; e-mail: medien(at)awi.de)

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Melting glaciers have a limited impact on Swiss hydropower production
06.09.2018 | Schweizerischer Nationalfonds SNF

nachricht Greenhouse emissions from Siberian rivers peak as permafrost thaws
04.09.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel 3D printed polymer lenses for X-ray microscopes: highly efficient and low cost

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart invented a new and cost-effective method for making X-ray lenses with nanometer-sized features and excellent focusing capabilities. By using an advanced 3D printing technique, a single lens can be manufactured under a minute from polymeric materials with extremely favorable X-ray optical properties, hence the costs of prototyping and manufacturing are strongly reduced. High-throughput and high-yield manufacturing processes of such lenses are sought after world-wide, which is why the scientists have filed a patent for their invention.

X-ray microscopes are fascinating imaging tools. They uniquely combine nanometer-size resolution with a large penetration depth: X-ray microscopy or XRM is the...

Im Focus: Tilted pulses

Physicists from Konstanz produced extremely short and specifically-shaped electron pulses for materials studies in the femtosecond and attosecond range in collaboration with Munich-based institutes

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing...

Im Focus: Digital Twin meets Plug & Produce – Fraunhofer IPK at the IMTS in Chicago

Hannover Messe is expanding to the USA – and Fraunhofer IPK is joining in with a trendsetting exhibit. It combines fast and flexible design and application of the shopfloor IT with a digital twin, which ensures transparency even in complex production systems.

For the first time ever, Deutsche Messe organizes a Hannover Messe brand event outside of Germany – and Fraunhofer IPK is taking part.

Im Focus: Watching atoms and electrons at work

Kiel layered crystals are used worldwide as a basis for exploring the nano-cosmos

The properties of materials are determined by their atomic structure. If atoms and electrons change their positions, then the characteristics of a material...

Im Focus: How a NASA scientist looks in the depths of the Great Red Spot to find water on Jupiter

For centuries, scientists have worked to understand the makeup of Jupiter. It's no wonder: this mysterious planet is the biggest one in our solar system by far, and chemically, the closest relative to the Sun. Understanding Jupiter is a key to learning more about how our solar system formed, and even about how other solar systems develop.

But one critical question has bedeviled astronomers for generations: Is there water deep in Jupiter's atmosphere, and if so, how much?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Researchers develop a solid material with mobile particles that react to the environment

10.09.2018 | Materials Sciences

Bacteria optimise their swimming behaviour

10.09.2018 | Life Sciences

New blood pressure app

10.09.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>