Close relationship between past warming and sea-level rise

Comparison of this record with data on global climate and carbon dioxide (CO2) levels from Antarctic ice cores suggests that even stabilisation at today's CO2 levels may commit us to sea-level rise over the next couple of millennia, to a level much higher than long-term projections from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).

Little is known about the total amount of possible sea-level rise in equilibrium with a given amount of global warming. This is because the melting of ice sheets is slow, even when temperature rises rapidly. As a consequence, current predictions of sea-level rise for the next century consider only the amount of ice sheet melt that will occur until that time. The total amount of ice sheet melting that will occur over millennia, given the current climate trends, remains poorly understood.

The new record reveals a systematic equilibrium relationship between global temperature and CO2 concentrations and sea-level changes over the last five glacial cycles. Projection of this relationship to today's CO2 concentrations results in a sea-level at 25 (±5) metres above the present. This is in close agreement with independent sea-level data from the Middle Pliocene epoch, 3-3.5 million years ago, when atmospheric CO2 concentrations were similar to the present-day value. This suggests that the identified relationship accurately records the fundamental long-term equilibrium behaviour of the climate system over the last 3.5 Million years.

Lead author Professor Eelco Rohling of the University of Southampton's School of Ocean and Earth Science based at NOCS, said: “Let's assume that our observed natural relationship between CO2 and temperature, and sea level, offers a reasonable 'model' for a future with sustained global warming. Then our result gives a statistically sound expectation of a potential total long-term sea-level rise. Even if we would curb all CO2 emissions today, and stabilise at the modern level (387 parts per million by volume), then our natural relationship suggests that sea level would continue to rise to about 25 m above the present. That is, it would rise to a level similar to that measured for the Middle Pliocene.”

Project partners Professor Michal Kucera (University of Tübingen) and Dr Mark Siddall (University of Bristol), add: “We emphasise that such equilibration of sea level would take several thousands of years. But one still has to worry about the large difference between the inferred high equilibrium sea level and the level where sea level actually stands today. Recent geological history shows that times with similarly strong disequilibria commonly saw pulses of very rapid sea-level adjustment, at rates of 1-2 metres per century or higher.”

The new study's projection of long-term sea-level change, based on the natural relationship of the last 0.5 to 3.5 million years, differs considerably from the IPCC's model-based long-term projection of +7 m. The discrepancy cannot be easily explained, and new work is needed to ensure that the 'gap is closed'.

The observed relationships from the recent geological past can form a test-bed or reality-check for models, to help them achieve improved future projections.

The project was funded by the Natural Environment Research Council (UK) and the Deutsche Forschungs-Gemeinschaft (Germany).

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 02380596100).

Media Contact

Dr. Rory Howlett EurekAlert!

More Information:

http://www.soton.ac.uk

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors