Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With climate and vegetation data, UCSB geographers closer to predicting droughts in Africa

02.05.2012
What might happen if droughts were predicted months ahead of time?

Food aid and other humanitarian efforts could be put together sooner and executed better, say UC Santa Barbara geographers Chris Funk, Greg Husak, and Joel Michaelsen. After over a decade of gathering and analyzing climate and vegetation data from East Africa, the researchers, who are part of the U.S. Agency for International Development's Famine Early Warning System Network (FEWS NET), say there is enough evidence to associate climate conditions in the region with projected rainfall deficits that could lead to food shortages.

"We've been looking at climate in East Africa and trying to relate that back to patterns in sea surface temperatures, rainfall, and winds over the Indian and Pacific oceans," said Funk, who analyzes and predicts large-scale climate anomalies in Africa. Results show that over the last 14 years, the number of droughts has doubled in East Africa. Roughly half of the last 14 years have been drought years.

"We've been worried about these trends for a long time," said Michaelsen, who studies the patterns of vegetation greening and browning in the area. "This year marks a bit of a watershed because we're starting to understand more the specific structure of these droughts, which is what underlay our early warning projections this year."

Through the climate data, coupled with satellite data that has recorded the patterns of vegetation greening and browning over the last decade, the researchers have detected a pattern that points to the likelihood of water shortages months ahead of time –– a pattern the U.S. government is taking seriously. A recent alert from the government-run USAID agency has taken into account FEWS NET's projection of the likelihood of low rainfall this March-May rainy season in East Africa, as USAID prepares its outreach efforts.

"It's already a billion-dollar problem that they're thinking needs $50 million more; they're already anticipating a 5 percent increase in the need for aid," said Husak, who specializes in analyzing remote sensing data and rainfall. The area, which includes chronically food-insecure countries like Ethiopia and Somalia, is still recovering from last year's famine.

The U.S. government spends more than a billion dollars in food aid every year. FEWS NET was created after the 1984-1985 Ethiopian famine, an event that killed over a million people before sufficient food aid could be airlifted into the country. FEWS NET has since become a leader in integrating monitoring, forecasting, and climate trends analysis.

Famine, say the researchers, is the result of more than severe climate: Conflict, political unrest, corruption, and other human factors are also major contributors to the crisis. Additionally, relief is not just a matter of putting food on a boat and distributing it among the locals. If food aid is sent to a place that doesn't need it, the surplus could distort the local market by devaluing the prices of local products. Conversely, not providing food aid quickly enough distorts the market in the other direction, limiting access to available resources.

"Prices of food have gone up," said Michaelsen. "It's not the brownness (of the vegetation) that causes food insecurity; it's the price of food." The challenge, say the geographers, will be for aid agencies to determine where their finite resources will go.

In the long term, and with more information, Michaelsen, Husak, and Funk, along with the extensive network of colleagues in FEWS NET, hope to gain a better understanding of the effects the changing climate will have on the abilities of a region –– and the agencies that support it –– to prevent future crises.

"There are going to be a lot of surprises, and how agile we are at responding to those surprises is going to make a big difference," said Michaelsen.

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>