Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Study Projects Major Changes in Vegetation Distribution by 2100

03.02.2014
As surface warms, distribution of plant species could be affected

Climate researchers have calculated that the spread of plant species in nearly half the world’s land areas could be affected by predicted global warming by the end of the century.

An international research team led by Song Feng, an atmospheric scientist at the University of Arkansas, used a scenario projecting a 3- to 10-degree increase in Celsius temperatures by 2100 to calculate that climate types will change in 46.3 percent of the global land area.

That scenario is referred to by climate scientists, according to Song, as “business as usual” because it assumes that “what we continue to do today we will do in the future, meaning that there will be no significant measures to reduce greenhouse-gas emissions that are warming the planet,” he said.

The scenario has been adopted by the Intergovernmental Panel on Climate Change and calls for moderate to strong warming in the middle and high latitudes of the northern hemisphere and weaker warming in the tropics and the southern hemisphere.

“Climates are associated with certain types of vegetation,” Feng said. “If the surface continues to get warmer, certain native species may no longer grow well in their climate, especially in higher latitudes. They will give their territory to other species. That is the most likely scenario.”

Feng and colleagues in the United States and Asia published their findings in the January issue of the journal Global and Planetary Change, in a study titled “Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations.”

Their study examined shifts in climate regimes around the world using the Köppen-Trewartha climate classification, which is based on the concept that native vegetation is the best expression of climate. The researchers analyzed observations made from 1900 to 2010, and simulations from 1900 to 2100 from 20 global climate models participating in a project of the World Climate Research Programme.

“Changes in precipitation played a slightly more important role in causing shifts of climate type during the 20th century. However, the projected warming plays an increasingly important role and dominates shifts in climate type when the warming becomes more pronounced in the 21st century,” said Feng, an assistant professor of geosciences in the J. William Fulbright College of Arts and Sciences.

“Those vast changes also imply that the global land area is experiencing vegetation-type conversions, with species distributions quite different from those that are familiar to us in modern civilization,” he said.

Feng’s study does not address exact changes to specific species, however. That area requires more research.

“This study is on the broad scale,” he said. “It’s showing the big picture.”

Overall, the models consistently project increasing precipitation over the high latitudes of the northern hemisphere and reduced precipitation in southwestern North America, the Mediterranean, northern and southern Africa and all of Australia, according to the study.

Based on the projected changes in temperature and precipitation, the Köppen-Trewartha climate types would shift toward warmer and drier climate types. Regions of temperate, tropical and dry climate types are projected to expand, while regions of polar, sub-polar and subtropical climate types are projected to contract.

In 2011, Feng’s research team predicted a reorganization of Arctic climates by the end of the 21st century. Their predictions show the tundra in Alaska and Canada giving way to trees, shrubs and plants typical of more southerly climates, as well as other global landscape changes.

The 2011 study was one of the first to apply a specific climate classification system to a comprehensive examination of climate changes throughout the Arctic by using both observations and a collection of projected future climate changes.

The latest results were obtained through a collaborative effort with Qi Hu, Ruopu Li and Zhenghong Tang at the University of Nebraska-Lincoln, Wei Huang at Lanzhou University in China and Chang-Hoi Ho at Seoul National University in South Korea.

CONTACT:
Song Feng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-4748, songfeng@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>