Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate satellite: Tracking methane with robust laser technology

22.06.2017

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as common in the earth’s atmosphere – so far. For some years now, the methane concentration has been increasing. In order to get to the root causes, it is important to measure where and how much methane is released into the earth’s atmosphere.


The LiDAR system for the MERLIN mission incorporates all components from the pump laser to the frequency conversion in a particularly compact design suitable for space operation.

Fraunhofer ILT

However, it is not possible to measure the emission values at high resolution using conventional measurement technology. Currently, satellite-based systems use sunlight to detect methane. Therefore, it is only possible to measure greenhouse gases on the side of the earth facing the sun and when the skies are free of clouds. The absorption of light enables an assessment to be made on the molecules present in the air.

Methane can be measured anywhere and anytime

»Our laser-based measurement system does not need sunlight, so you can use it to measure anytime and anywhere«, says Dr. Jens Löhring, who has been co-developing the new laser technology at the Fraunhofer ILT in Aachen. »The aim of this mission is to provide climate scientists with accurate global data on methane distributions that can be used to feed their climate models. This makes it possible to better predict climate change.«

Scientists at Fraunhofer ILT are therefore developing a laser that can send very precise single-frequency light pulses to the earth. This method also uses light absorption to measure if and in which concentration methane is present – in comparison to methane measurements using sunlight, this is more precise. The laser pulse can be precisely adjusted to the absorption line of methane at a predetermined wavelength. »Each gas has its spectral fingerprint. Depending on its specific wavelength, it absorbs particularly well or bad. It is important that other gases do not have an absorption line at this wavelength so that the measurement is not falsified«, Löhring explains. The new laser is an essential component of the LiDAR system (Light detection and ranging) on board of MERLIN.

Maintenance-free laser despite heavy use

In order for the laser to function smoothly and maintenance-free during its three-year long space mission, it must be able to withstand shocks and vibrations as well as extreme temperature variations between minus 30 and plus 50 degrees Celsius. »We have developed optomechanical components for the laser, such as mirror and lens holders and so on, that meet these requirements and maintain their very precise settings.«

Another challenge is to keep the air clean in the housing around the laser. »Adhesives can contaminate the air, and tiny particles can break free and deposit themselves on the mirrors and destroy the optical components. For this reason the laser has been entirely soldered and screwed. This is a completely new technology that makes the system even more robust and, therefore, also interesting for numerous applications in industry and production engineering«, says Löhring.

The MERLIN-LiDAR-Modell will be on display at the joint Fraunhofer booth in Hall A2 Booth 431 at the LASER World of Photonics 2017 in Munich, Germany.

The project is funded by the Federal Ministry of Economics and Energy (BMWi) on behalf of the German Aerospace Center (DLR).

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
https://www.fraunhofer.de/en/events/fraunhofer-at-trade-fairs/fraunhofer-at-lase...

Janis Eitner | Fraunhofer-Gesellschaft

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>