Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate engineering may save coral reefs, study shows

26.05.2015

Geoengineering of the climate may be the only way to save coral reefs from mass bleaching, according to new research.

Coral reefs are considered one of the most vulnerable ecosystems to future climate change due to rising sea surface temperatures and ocean acidification, which is caused by higher atmospheric levels of carbon dioxide.


Current coral bleaching in Fiji.

Credit: Professor Peter J Mumby, University of Queensland

Mass coral bleaching, which can lead to coral mortality, is predicted to occur far more frequently over the coming decades, due to the stress exerted by higher seawater temperatures.

Scientists believe that, even under the most ambitious future CO2 reduction scenarios, widespread and severe coral bleaching and degradation will occur by the middle of this century.

The collaborative new research, which includes authors from the Carnegie Institution for Science, the University of Exeter, the Met Office Hadley Centre and the University of Queensland, suggest that a geoengineering technique called Solar Radiation Management (SRM) reduces the risk of global severe bleaching.

The SRM method involves injecting gas into the stratosphere, forming microscopic particles which reflect some of the sun's energy and so help limit rising sea surface temperatures.

The study compared a hypothetical SRM geoengineering scenario to the most aggressive future CO2 reduction strategy considered by the Intergovernmental Panel on Climate Change (IPCC), and found that coral reefs fared much better under geoengineering despite increasing ocean acidification.

The pioneering international study is published in leading scientific journal, Nature Climate Change.

Lead author Dr Lester Kwiatkowski of the Carnegie Institution for Science said "Our work highlights the sort of climate scenarios that now need to be considered if the protection of coral reefs is a priority".

Dr Paul Halloran, from the Geography department of the University of Exeter added: "The study shows that the benefit of SRM over a conventional CO2 reduction scenario is dependent on the sensitivity of future thermal bleaching thresholds to changes in seawater acidity.

This emphasises the need to better characterise how warming and ocean acidification may interact to influence coral bleaching over the 21st century."

Professor Peter Cox, co-author of the research and from the University of Exeter said: "Coral reefs face a dire situation regardless of how intensively society decarbonises the economy. In reality there is no direct choice between conventional mitigation and climate engineering but this study shows that we need to either accept that the loss of a large percentage of the world's reefs is inevitable or start thinking beyond conventional mitigation of CO2 emissions."

This work shows the very different impacts on coral bleaching of different measures to tackle climate change. These different techniques will also have different effects on other impacts such as regional crop growth or water availability.

Duncan Sandes | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>