Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change weakens Walker circulation

20.10.2017

Data from the last glacial period confirm prognosis

Strong rains that produce flooding on one extreme, and droughts on the other, influence the lives of millions of people in tropical regions.


With the help of a device called a CTD rosette, scientists can takes samples from the water column and measure water parameters such as salinity, temperature, oxygen content and particle density.

Photo: MARUM – Center for Marine Environmental Sciences, University of Bremen

Dr. Mahyar Mohtadi of MARUM, the Center for Marine Environmental Sciences at the University of Bremen, with a team of scientific colleagues, has studied how the atmospheric water cycle could develop in the future. Their results are published in the journal Nature Communications.

A global system of winds and ocean currents influences climate. Walker circulation, named after its discoverer, the English physicist Sir Gilbert Thomas Walker (1868-1958), plays an important role along the equator. It constitutes an atmospheric water cycle. As a result of high water temperatures, averaging 28.5 degrees Celsius, humid air masses rise above the Indonesian archipelago.

In the upper atmosphere, these split to feed two different cycles: one part flows eastward toward South America and the other westward toward Africa. The rising air masses result in the formation of a low-pressure area over Indonesia, which is responsible for the wet climate there. In contrast, off the coasts of Africa and South America, high-pressure systems develop because the air masses here descend and suppress cloud formation. These areas, therefore, usually have sparse rainfall.

How do climate changes impact climate systems?

In the present study, the researchers Mahyar Mohtadi, Matthias Prange, Enno Schefuß and Tim C. Jennerjahn, from MARUM, the Center for Marine Environmental Sciences of the University of Bremen and the Leibniz Centre for Tropical Marine Research in Bremen, have analyzed the effects of increasing temperature on the Walker circulation. In order to understand these changes it is helpful to consider a period in Earth’s history when the average temperatures were colder.

“That is why we have compared conditions during the last glacial period at about 20,000 years ago with the warmer conditions of the last 3,000 years,” says Mohtadi. Scientists use weather records applied through mathematical models to make predictions of climate in the coming decades.

It is often not sufficient to analyze only the directly measured weather data from the 20th century, because the observed changes are not comprehensive enough to provide a complete picture. For this reason, paleoclimatologists have to look further back in time. They use sea-floor deposits, which, like the rings in a tree trunk, record climate conditions in a kind of archive.

New knowledge thanks to the combination of various data and models

“Previous prognoses for the future suggest that the intensity of Walker circulation will decline as the Earth becomes warmer. The weakened circulation will result in more rain over East Africa and less rain over Southeast Asia,” explains Mohtadi. The rain would have disastrous consequences, however, because it would cause extensive flooding instead of a fertile climate for East Africa. A glimpse into the past, where cold and warm periods have alternated with increased or diminished circulation, would help to verify whether the theory of the climate researchers is correct. “As far as Walker circulation is concerned, it is correct,” concludes Mohtadi.

Mahyar Mohtadi, Matthias Prange, Enno Schefuß and Tim C. Jennerjahn combined different data sets and climate models. They included data from sediment cores off the coast of Indonesia, satellite data and measurement series, as well as a number of different climate models in which water temperatures on the sea surface are compared to those at greater depths. Further evidence was provided by plant remains in the sediments that reveal changes in precipitation through the past. Mahyar Mohtadi considers the quality of these combined data to be very high. “We have analyzed various indicators from the glacial period and compared them to those from today – it provides a robust signal.”

Contact:
Dr. Mahyar Mohtadi
Telephone: 0421-218 65660
Email: mmohtadi@marum.de

Original publication:
Mahyar Mohtadi, Matthias Prange, Enno Schefuß, Tim C. Jennerjahn: Late Holocene slowdown of the Indian Ocean Walker circulation. Nature Communications. DOI: 10.1038/s41467-017-00855-3

Partiticipating institutes:
MARUM – Center for Marine Environmental Sciences, University of Bremen
Leibniz Centre for Tropical Marine Research (ZMT), Bremen

Further information / photo material:
Ulrike Prange
MARUM public relations
Email: uprange@marum.de

MARUM, using state-of-the-art methods and through participation in international projects, investigates the role of the ocean in the Earth’s system, particularly with respect to global change. It quantifies the interactions between geological and biological processes in the ocean and contributes to the sustainable use of the oceans. MARUM comprises the DFG Research Centre and the Excellence Cluster “The Oceans in the Earth System.”

Ulrike Prange | idw - Informationsdienst Wissenschaft
Further information:
http://www.marum.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>