Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: How does soil store CO2?

08.01.2014
Carbon content in soil influences climate models

Global carbon dioxide (CO2) emissions continue to rise – in 2012 alone, 35.7 billion tons of this greenhouse gas entered the atmosphere*. Some of this CO2 is absorbed by the oceans, plants and soil. As such, they provide a significant reservoir of carbon, stemming the release of CO2.


Carbon tends to bind to specific rough mineral surfaces in the soil (yellow areas). (Image: C. Vogel/TUM)


New organic carbon mostly accumulates on existing hot spots. Left: Mineral surfaces with all accumulations of carbon (yellow). Right: Mineral surfaces with new organic substance (green and magenta). (Image: C. Vogel/TUM)

Scientists have now discovered how organic carbon is stored in soil. Basically, the carbon only binds to certain soil structures. This means that soil’s capacity to absorb CO2 needs to be re-assessed and incorporated into today’s climate models.

Previous studies have established that carbon binds to tiny mineral particles. In this latest study, published in Nature Communications, researchers of the Technische Universität München (TUM) and the Helmholtz Zentrum München have shown that the surface of the minerals plays just as important a role as their size. “The carbon binds to minerals that are just a few thousandths of a millimeter in size – and it accumulates there almost exclusively on rough and angular surfaces,” explains Prof. Ingrid Kögel-Knabner, TUM Chair of Soil Science.

The role of microorganisms in sequestering carbon

It is presumed that the rough mineral surfaces provide an attractive habitat for microbes. These convert the carbon and play a part in binding it to minerals. “We discovered veritable hot spots with a high proportion of carbon in the soil,” relates Cordula Vogel, the lead author of the study. “Furthermore, new carbon binds to areas which already have a high carbon content.”

These carbon hot spots are, however, only found on around 20 percent of the mineral surfaces. It was previously assumed that carbon is evenly distributed in the soil. “Thanks to our study, we can now pin-point the soil that is especially good for sequestering CO2,” continues Kögel-Knabner. “The next step is to include these findings in carbon cycle models.”

Mass spectrometer helps to visualize molecules

The sample material used by the team was loess, a fertile agricultural soil found in all parts of the world – which makes it a very important carbon store. The researchers were able to take ultra-precise measurements using the NanoSIMS mass spectrometer. This procedure allowed them to view and compare even the most minute soil structures.

*Source: Global Carbon Atlas

Publication:
Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils, Cordula Vogel, Carsten W. Müller, Carmen Höschen, Franz Buegger, Katja Heister, Stefanie Schulz, Michael Schloter & Ingrid Kögel-Knabner, Nature Communications, DOI: 10.1038/ncomms3947.
Contact:
Prof. Dr. Ingrid Kögel-Knabner
Technische Universität München
Chair of Soil Science
Tel: +49 8161 71-3677
koegel@wzw.tum.de

Barbara Wankerl | EurekAlert!
Further information:
http://www.soil-science.com/
http://www.tum.de

Further reports about: CO2 Climate change Nature Immunology Soil Soil Science TUM hot spots soil structure

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>