Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: Self-enhancing effect cannot be explained by soil animals

21.12.2017

When the soil warms up, it releases more carbon dioxide (CO2) – an effect that further fuels climate change. Until now, it had been assumed that the reason for this was mainly due to the presence of small soil animals and microorganisms that would eat and breathe more in warmer temperatures. However, a new study in Nature Climate Change has shown that this is not the case. Quite the contrary: If warmth is accompanied by drought, the soil animals eat even less. In order to improve the predictive power of climate models, it is now crucial to understand the biological processes in the soil better, say the scientists.

The fact that the world's climate is changing is mainly due to the burning of fossil fuel. As a consequence, large quantities of carbon dioxide (CO2) are released into the Earth's atmosphere. However, additionally, climate change is also being intensified on its own, because global warming is also causing the natural carbon cycle to change.


Woodlice (isopods) are important detrivores in the soil.

Sarah Zieger


The scientists used so-called bait lamina strips to measure how much the soil animals were eating.

Julia Siebert

Although on Earth, carbon is constantly converted from solid compounds into gaseous CO2 and vice versa, warmer temperatures can further enhance carbon losses in form of CO2 from the soil. As a result, more CO2 is introduced into the Earth's atmosphere: a positive feedback.

Scientists had previously assumed that this effect was mainly due to the presence of small animals and microorganisms in the soil, which feed on dead organic matter (for example, fallen leaves). Because when they ‘burn’ their food, CO2 is released (‘respiration’). It was assumed that at warmer temperatures, insects and worms with decomposing roles would eat more, and the dead organic matter in the soil would be decomposed at faster rates. After all, these animals are poikilotherms whose body temperature and activity depend on the environment.

Bacteria and unicellular fungi in the soil should also be more active at warmer temperatures, based on the current understanding. But now a new study questions this assumption. A team of researchers led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University carried out an experiment to simulate the warming of the soil in the forest and found out surprisingly: The warmer temperatures have no influence on the feeding activity of the soil animals.

When the researchers simulated a second effect of climate change in addition to warming, namely drought, the results were even the opposite as expected: The soil animals ate less, and also the microorganisms living in the soil showed a decline in respiration – an indication that they also consumed less food.

Dr Madhav P. Thakur, first author of the study, explains why these results are of great relevance: “The feedback effect of climate warming via the greater release of CO2 from the soil is a crucial assumption in models predicting our future climate. Therefore, it is important to know what it causing this effect. Our results indicate that it may not be the soil animals, on the contrary: Their role may actually be the opposite of what we expected, at least when warming and drought occur together”.

According to Professor Nico Eisenhauer, the senior author of the study: “It is most likely that instead of soil animals and microorganisms, the plants are responsible for the feedback effect because they also breathe with their roots. In order to improve the validity of climate models, we now urgently need to understand the biological processes in the soil better.” After all, soil is the major reservoir of carbon on earth, the scientist says.

The study was conducted as part of a long-term climate change experiment in Minnesota, USA. In the ‘B4WarmED’ (Boreal Forest Warming at an Ecotone in Danger) experiment, scientists are heating various plots of boreal forest land artificially by 3.4°C. In addition, they also reduce rainfall by 40% in some places by setting up tents in rainy weather. The scientists measured how much the soil animals ate using ‘bait lamina strips’: small sticks with holes in which the researchers filled substrate that resembled the organic matter in the soil. These sticks were stuck deep into the ground.

Every two weeks the scientists checked how much of the substrate was eaten. The researchers carried out more than 40 such measurements over a period of four years. It is the first study of this scale to investigate the effects of global warming and drought on decomposer soil animals. In addition, the researchers checked the respiration of soil microorganisms by excluding plant roots with a metal ring in small soil areas and then measuring how much CO2 was released from the soil with a gas analyser. Tabea Turrini

Original publication:
Madhav P. Thakur, Peter B. Reich, Sarah E. Hobbie, Artur Stefanski, Roy Rich, Karen E. Rice, William C. Eddy, Nico Eisenhauer (2017): Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change. doi:10.1038/s41558-017-0032-6


Funding:
Deutsche Forschungsgemeinschaft in the frame of the Emmy Noether research group (Ei 862/2), European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 677232), German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, funded by the German Research Foundation (FZT 118), B4WarmED project: US Department of Energy (Grant number DE-FG02-07ER64456) and College of Food, Agricultural and Natural Resource Sciences at the University of Minnesota


Contact
Dr Madhav P. Thakur
Postdoctoral researcher at the Department Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv),
Leipzig University
phone: Mobile number availalbe from iDiv Media and Communications.
E-mail: madhav.thakur@idiv.de
web: https://www.idiv.de/en/groups_and_people/employees/details/eshow/thakur_madhav_p...


Prof Nico Eisenhauer
Head of the Department Experimental Interaction Ecology, German Centre of Integrative Biodiversity Research (iDiv),
Leipzig University
phone: +49 341 9733167
E-mail: nico.eisenhauer@idiv.de
web: https://www.idiv.de/en/groups_and_people/employees/details/eshow/eisenhauer_nico...


Dr Volker Hahn
Media and Communications
German Centre for Integrative Biodiversity Research (iDiv)
phone: +49 341 9733154
E-mail: volker.hahn@idiv.de
web: https://www.idiv.de/groups_and_people/employees/details/eshow/hahn-volker.html

Tabea Turrini | idw - Informationsdienst Wissenschaft
Further information:
http://www.idiv.de/

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>