Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change: The Past of the Atlantic Heat Pump

16.10.2012
The circulation of the Atlantic Ocean was faster during the last Ice Age than today

Heat transport in the Atlantic Ocean during the last Ice Age was not weaker, as long assumed, but in fact stronger than it is today. This discovery was made by an international research team led by environmental physicists at Heidelberg University.

The scientists used ultra-precise measurements of natural radionuclides in ocean sediments to study the ocean’s strength of circulation and uncovered new information about the past of the “Atlantic heat pump”. The results of their research, which are also significant for correctly predicting climate models, were published in the journal “Nature Geoscience”.

“Thanks to the Gulf Stream and its northern branches, it is much warmer here than at the same latitudes in North America. Without the ocean’s heat transport, which is comparable to that of a million large power plants, temperatures in Northern and Western Europe would be considerably cooler”, explained Dr. Jörg Lippold, lead author of the study from Heidelberg University‘s Institute of Environmental Physics. Europe’s heating system originates in the Gulf of Mexico, where the waters of the ocean warm and flow northeast due to wind and the Earth’s rotation. The water at the surface cools in the process, growing denser, and then sinks in the North Atlantic, where it flows south again in the Ocean’s depths.

“Using two exotic representatives of the periodic table from core samples of Atlantic deep sea sediment, we were able to quantitatively determine this return flow for the first time”, said the Heidelberg researcher. The two isotopes studied, protactinium-231 and thorium-230, are produced from the radioactive decay of uranium found naturally in sea water. While thorium is deposited directly in the sediment at the Ocean’s floor, the protactinium follows the circulation and is carried by the deep sea current from the North Atlantic. The proportion of the two elements in the sediment ergo reflects the strength of the circulation. Around the time of the largest global ice coverage approximately 20,000 years ago, less proctactinium-231 was measured. According to Dr. Lippold, this points to an increase in the Atlantic circulation, which is also supported by model calculations.

Knowing that the Atlantic circulated faster during the Ice Age is important for models used to calculate the future of the world’s climate. The accuracy of the predictions of climate models is assessed in particular by whether they correctly reflect the climate in the past. “The oceans are the key to the Earth’s climate system. There is approximately 50 times more CO2 bound in the Earth’s Oceans than in the atmosphere, with 1,000 times more heat storage capacity“, said Dr. Lippold. “With the Ocean circulating more quickly then, it could also extract and store more CO2 from the atmosphere.”

Understanding these relationships has special significance for major parts of Europe. “If the Ocean warms in the course of climate change and the density of the waters of the North Atlantic drops due to melt water or increased precipitation, the heat pump could weaken. Paradoxically, this could cause cooling in Europe while the rest of the world heats up”, explained the Heidelberg environmental physicist.

The international team’s large-scale study was based on measurements using mass spectrometers and particle accelerators, which were able to detect the required concentrations of a few picograms. The study led by Dr. Jörg Lippold included researchers from Vancouver, Paris, Oxford, Zürich, Lyon, Bristol and Tübingen. Germany’s support of the project came from the German Research Foundation. For more information, go to www.iup.uni-heidelberg.de/institut/forschung/groups/fa/marine

Original publication:
Jörg Lippold, Yiming Luo, Roger Francois, Susan E. Allen, Jeanne Gherardi, Sylvain Pichat, Ben Hickey, Hartmut Schulz: Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nature Geoscience (14 October 2012), doi 10.1038/ngeo1608

Contact:
Dr. Jörg Lippold
Institute of Environmental Physics
Phone: +49 6221 54-6385
joerg.lippold@iup.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>