Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change in Kuwait Bay

01.12.2009
Since 1985, seawater temperature in Kuwait Bay, northern Arabian Gulf, has increased on average 0.6°C per decade. This is about three times faster than the global average rate reported by the Intergovernmental Panel on Climate Change (IPCC).

Differences are due to regional and local effects. Increased temperatures are having profound effects on key habitats and on power generation the Arabian Gulf.

Researcher Dr Thamer Al-Rashidi of the National Oceanography Centre, Southampton, said: "Because the waters of Kuwait Bay are well mixed by the tides, measurements of sea surface temperature can be used to assess temperature trends over time in the bay as a whole."

He and his colleagues used data on sea surface temperature (1985-2007) remotely sensed by a number of polar orbiting satellites to assess warming in Kuwait Bay and the Gulf region.

The data were 'ground truthed' by direct measurements of sea surface temperature in the region, and are in accord with air temperature trends recorded at Kuwait airport, and verify trends found in satellite data.

They found that the sea surface temperature of Kuwait Bay increased over the period at an average rate of around 0.62°C per decade, with an uncertainty of plus or minus 0.01°C. This is about three times the rate of average global increase estimated by the IPCC.

The increase was greatest in the early summer and least during winter months. The length of summertime increased almost twice as fast as peak summertime temperature. In 1998 and 2003, the monthly measurements of sea surface temperature showed unusually high peaks in summer temperature coincident with El Niño events – periodic warming of the atmosphere and ocean affecting weather in many parts of the world.

Temperature dipped in 1991, in the aftermath of the Iraqi invasion of Kuwait. "Dense smoke from the burning of oil fields hung over the region blocking out the sun, and we believe that this atmospheric dimming caused the relatively low summertime temperature peak recorded that year," said Dr Al-Rashidi, himself an officer in the Kuwaiti Navy. However, temperature then increased fairly steadily between 1992 and 2004.

"What all of this tells us," says Dr Al-Rashidi, "is that the global trends reported by the IPCC may not be representative locally."

The researchers estimate that about a third (0.2°C) of the observed decadal increase in seawater temperature in Kuwait Bay can be attributed to global climate change, while around 13 per cent of the increase (0.08°C) is due to human activity along the coast of the bay, especially the direct impacts of power and desalination plants.

The remaining 0.3°C (50 per cent) of decadal warming appears to be due to changes in regional drivers, including circulation and mixing of seawater in the Arabian Gulf, the influence of the dominant north-westerly wind (Shamal), freshwater discharge from the Euphrates and Tigris rivers, and sand storms.

Increased seawater temperatures are likely responsible, at least in part, for the reduction in dissolved oxygen causing summertime fish kills, and also for coral bleaching in the region. In general, the researchers warn that increased temperatures may lead to serious environmental degradation in the sensitive marine ecosystems of the Arabian Gulf.

Dr Al-Rashidi argues that regional warming could also have strategic implications: "Kuwait is dependent on desalination plants for its fresh water, and at temperatures over 37-38°C the turbines generating the electricity driving these plants have to be turned off," he said.

However, there have been distinct reductions in temperature since 2004 due to dust storms and their effect solar dimming. The frequency of dust storms has increased in recent years due to decreasing rainfall and increasing desertification. How this will interact with other local, regional and global factors to affect average temperatures in the long term remains uncertain.

"The lesson learnt is that temperature trends that we experience may be quite different from place to place due to variations in local and regional effects," said Dr Al-Rashidi.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact

Dr Thamer Al-Rashidi: email thamer22@noc.soton.ac.uk; telephone +44 (0) 792 0461107

The researchers are Thamer Al-Rashidi and Carl Amos (NOCS), Hamdy El-Gamily (Kuwait Institute for Scientific Research, KISR, and National Authority for Remote Sensing and Space Sciences, Cairo, Egypt), and Karim Rakha (KISR).

Thamer Al-Rashidi has recently been awarded his PhD at the University of Southampton's School of Ocean and Earth – part of the National Oceanography Centre.

Publication:

Al-Rashidi, T. B., et al. Sea surface temperature trends in Kuwait Bay, Arabian Gulf. Natural Hazards 50, 72-82 (2009).

http://www.springerlink.com/content/81328pp44gnl1u23/

Updated data are included in Al-Rashidi's PHD thesis.

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>