Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change disasters could be predicted

20.06.2011
Climate change disasters, such as the melting of the Greenland ice sheet, dieback of the Amazon rainforest or collapse of the Atlantic overturning circulation, could be predicted according to University of Exeter research.

Writing in the journal Nature Climate Change, Professor Tim Lenton of the University of Exeter shows that the 'tipping points' that trigger these disasters could be anticipated by looking for changes in climate behaviour.

Climate 'tipping points' are small changes that trigger a massive shift in climate systems, with potentially devastating consequences. It is already known that climate change caused by human activity could push several potential hazards past their 'tipping point'. However, it is often assumed that these 'tipping points' are entirely unpredictable.

Professor Lenton argues that a system of forecasting could be developed to enable some forewarning of high-risk tipping points. The approach he outlines involves analysing observational data to look for signs that a climate system is slowing down in its response to short-term natural variability (which we experience as the weather). This characteristic behaviour indicates the climate is becoming unstable, and is a common feature of systems approaching critical thresholds known as 'bifurcation points'.

Professor Tim Lenton of the University of Exeter said: "Many people assume that tipping points which could be passed as a result of human-induced climate change are essentially unpredictable. Recent research shows that the situation is not as hopeless as it may seem: we have the tools to anticipate thresholds, which means we could give societies valuable time to adapt.

"Although these findings give us hope, we are still a long way from developing rigorous early warning systems for these climate hazards."

Early warning of climate tipping points by Professor Timothy Lenton (University of Exeter) is published in Nature Climate Change volume 1, issue 3, July 2011 and online on Sunday 19 June at 18.00 BST. Copies available on request.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>