Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ChemCam laser sets its sights on first Martian target

20.08.2012
Rock zapper ready after beaming back images of calibration targets

Members of the Mars Science Laboratory Curiosity rover ChemCam team have received the first photos from the instrument’s remote micro imager. The successful capture of ChemCam’s first 10 photos sets the stage for the first test bursts of the instrument’s rock-zapping laser in the near future.



“The successful delivery of these photos means we can begin efforts in earnest for the first images of Mars rocks by the ChemCam instrument and the first use of the instrument’s laser,” said Los Alamos National Laboratory planetary scientist Roger Wiens, Principal Investigator of the ChemCam Team. “We anticipate these next steps over the weekend.”

The next tasks for ChemCam—the inaugural laser burst and spectral reading—will help scientists determine the integrity of the ChemCam system and the pointing capability of the rover’s mast, which supports ChemCam’s laser and telescope. Scientists and engineers from NASA’s Curiosity rover mission have selected ChemCam’s first target, a three-inch rock designated N-165 located near the rover.

“Rock N-165 looks like your typical Mars rock, about three inches (seven centimeters) wide and it's about 10 feet away,” Wiens said. “We are going to hit it with 14 milliJoules of energy 30 times in 10 seconds. It is not only going to be an excellent test of our system, but it should be pretty cool too.”

The ChemCam system is one of 10 instruments mounted on the MSL mission’s Curiosity rover—a six-wheeled mobile laboratory that will roam more than 12 miles of the planet’s surface during the course of one Martian year (98 Earth weeks).

When ChemCam fires its extremely powerful laser pulse, it briefly focuses the energy of a million light bulbs onto an area the size of a pinhead. The laser blast vaporizes a small amount of its target up to seven meters (23 feet) away.

The resultant flash of glowing plasma is viewed by the system’s 4.3-inch aperture telescope, which sends the light down an optical fiber to a spectrometer located in the body of the rover. There the colors of the light from the flash are recorded, enabling scientists to determine the elemental composition of the vaporized material. ChemCam also has a high-resolution camera that provides close-up images of an analyzed location. It can image a human hair from seven feet away.

The ChemCam system is designed to capture as many as 14,000 observations throughout the mission.

The laser, telescope, and camera were provided by the French space agency, CNES, while the spectrometers, electronics, and software were built at Los Alamos National Laboratory, which leads the investigation. The spectrometers were developed with the aid of Ocean Optics, Incorporated, and Jet Propulsion Laboratory assisted with various aspects of development.

ChemCam’s first images can be seen on the Mars Science Laboratory mission website here: http://mars.jpl.nasa.gov/msl/multimedia/raw/?s=10&camera=CHEMCAM%5FRMI

Caption: Image of calibration target on the back of the Mars Science Laboratory mission Curiosity rover taken by the rover's ChemCam instrument. PHOTO CREDIT: NASA/JPL

Caption: Calibration targets mounted on the Mars Science Laboratory mission Curiosity rover are seen here prior to the mission launch. PHOTO CREDIT: Los Alamos National Laboratory

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

LANL news media contact: James E. Rickman, (505) 665-9203, jamesr@lanl.gov

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov/news/releases/chemcam-laser-sets-its-sights-on-first-martian-target.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>