Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon, Carbon, Everywhere; But Not from the Big Bang

13.05.2011
As Star Trek is so fond of reminding us, we’re carbon-based life forms. But the event that jump-started the universe, the Big Bang, didn’t actually produce any carbon, so where the heck did it – and we – come from? An NC State researcher has helped create supercomputer simulations that demonstrate how carbon is produced in stars, proving an old theory correct.

More than 50 years ago, an astronomer named Fred Hoyle deduced that when three helium nuclei – or alpha particles – come together inside the core of a star, they have difficulty combining to form carbon-12, the stuff we’re made of.

So he predicted a new state of carbon-12, one with an energy tuned just right to make the formation of carbon possible in stars. This new state is now known as the Hoyle state. Later experimentation demonstrated that the theory was correct, but no one had ever been able to reproduce the Hoyle state from scratch, starting from the known interactions of protons and neutrons. If the Hoyle state didn’t show up in those calculations, then the calculations must be incorrect or incomplete.

NC State physicist Dean Lee, along with German colleagues Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meissner, had previously developed a new method for describing all the possible ways that protons and neutrons can bind with one another inside nuclei. This “effective field theory” is formulated on a complex numerical lattice that allows the researchers to run simulations that show how particles interact. When the researchers put six protons and six neutrons on the lattice, the Hoyle state appeared together with other observed states of carbon-12, proving the theory correct from first principles.

... more about:
»Big Bang »Carbon »Physic »Physical »alpha particles

“We’ve had simple models of the Hoyle state using three alpha particles for a long time, but the first principles calculations weren’t giving anything close,” Lee says. “Our method places the particles into a simulation with certain space and time parameters, then allows them to do what they want to do. Within those simulations, the Hoyle state shows up.”

Their research appears in the May 13 issue of Physical Review Letters.

Lee adds, “This work is valuable because it gives us a much better idea of the kind of ‘fine-tuning’ nature has to do in order to produce carbon in stars.”

The Department of Physics is part of NC State’s College of Physical and Mathematical Sciences.

-peake-

Note to editors: An abstract of the paper follows.
“Ab initio calculation of the Hoyle state”
Authors: Dean Lee, North Carolina State University; Evgeny Epelbaum and Hermann Krebs, Institut fur Theoretische Physik II, Ruhr-Universitat Bochum, Germany; Ulf-G. Meissner, Helmholtz-Institut fur Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Universitat Bonn, Germany
Published: in Physical Review Letters
Abstract:
The Hoyle state plays a crucial role in the helium burning of stars heavier than our sun and in

the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at −85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

Tracey Peake | Newswise Science News
Further information:
http://www.ncsu.edu

Further reports about: Big Bang Carbon Physic Physical alpha particles

More articles from Earth Sciences:

nachricht NASA balloon mission captures electric blue clouds
24.09.2018 | NASA/Goddard Space Flight Center

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>