Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can seagrass help fight ocean acidification?

01.08.2018

Of course, the only way to truly fight ocean acidification reducing emissions

Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems, according to new work led by Carnegie's David Koweek and including Carnegie's Ken Caldeira and published in Ecological Applications.


Seagrass off the coast of California's Channel Islands.

Credit: Photographer: Claire Fackler, CINMS, NOAA.

When coal, oil, or gas is burned, the resulting carbon dioxide is released into the atmosphere where it is the driving force behind global climate change. But this atmospheric carbon dioxide is also absorbed into the ocean where chemical reactions with the seawater produce carbonic acid, which is corrosive to marine life, particularly to organisms like mussels and oysters that construct their shells and exoskeletons out of calcium carbonate.

Seagrasses provide an important source of food and shelter for marine animals, help fight erosion of the sediments that form the sea bed, and filter bacterial pathogens from the water. They also take up carbon dioxide as part of their daytime photosynthetic activity.

Research has already demonstrated that the estuaries and bays of California's coastline are experiencing ocean acidification. So, the team set out to test the theory that carbon dioxide uptake by seagrass meadows could buffer the pH of the ocean water in their immediate surroundings and help to fight off the effects of acidification in the short term.

They combined data from seagrass meadows in Tomales Bay, an inlet of the Pacific Ocean in California's Marin County, with sophisticated modeling tools that accounted for a variety of factors including, the amount of seagrass within the meadow, seasonal variation in photosynthetic activity and nighttime respiration, water depth, and tidal currents.

"Local stakeholders, such as California's shellfish industry, want to know whether seagrass meadows may help to counteract ocean acidification," Koweek said. "Our results suggest that seagrass meadows along the California coast will likely offer only limited ability to counteract ocean acidification over long periods of time."

On average, the computer simulations predicted that the seagrass meadows would turn back the clock on ocean acidification a few decades, a small offset to the more than 150 years of acidification--a process that is now happening more quickly than ever with increasing fossil fuel emissions.

However, there were small time windows where their models show that seagrass meadows were able to offer much greater buffering. These occurred during periods when low tides occurred during the daytime when photosynthesis occurs. Koweek and Caldeira say that these offer important opportunities.

This level of buffering could make an impact in aquaculture endeavors or even in natural shellfish communities where marine organisms are able to align their calcification activity with the seagrass buffering periods.

"We are starting to understand that some marine organisms, such as blue mussels, are actually able to shift the time of day in which they do most of their calcification. If other organisms are able to do the same, then even brief windows of significant ocean acidification buffering by seagrass meadows may bring substantial benefits to the organisms that live in them", Koweek said.

Koweek and Caldeira are grounded in their optimism for solutions to stop ocean acidification around the world.

"Of course, the only way to truly fight ocean acidification is to rapidly and permanently reduce the rate at which we are spewing carbon dioxide emissions into the sky," Caldeira noted.

"However," added Koweek, "seagrass meadows are a critical part of California's coastline. Although our results indicate that seagrass meadows along the California coast are not likely to offer long-term buffering to fight ocean acidification, their enduring role as habitat for marine organisms, protectors against sea level rise, and magnets of biodiversity should be more than enough reason to restore and protect these iconic ecosystems."

###

The paper's other co-authors are: Richard Zimmerman of Old Dominion University; Kathryn Hewett, Brian Gaylord, and John. J. Stachowicz of University of California Davis; Sarah Giddings of University of California San Diego's Scripps Institution of Oceanography; Kerry Nickols of California State University Northridge; Jennifer Ruesink of University of Washington; and Yuichiro Takeshita of the Monterey Bay Aquarium Research Institute.

This work is a contribution of the Seagrass Ocean Acidification Amelioration Workshop of the Bodega Marine Laboratory, financial support for which was provided by California Sea Grant and the Coastal & Marine Sciences Institute of the University of California, Davis. Partial support was provided by the National Science Foundation.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

David Koweek | EurekAlert!

More articles from Earth Sciences:

nachricht New insight into glaciers regulating global silicon cycling
14.08.2019 | University of Bristol

nachricht Coastal marine sediments contribute to the formation of greenhouse gases
31.07.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>