Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can seagrass help fight ocean acidification?

01.08.2018

Of course, the only way to truly fight ocean acidification reducing emissions

Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems, according to new work led by Carnegie's David Koweek and including Carnegie's Ken Caldeira and published in Ecological Applications.


Seagrass off the coast of California's Channel Islands.

Credit: Photographer: Claire Fackler, CINMS, NOAA.

When coal, oil, or gas is burned, the resulting carbon dioxide is released into the atmosphere where it is the driving force behind global climate change. But this atmospheric carbon dioxide is also absorbed into the ocean where chemical reactions with the seawater produce carbonic acid, which is corrosive to marine life, particularly to organisms like mussels and oysters that construct their shells and exoskeletons out of calcium carbonate.

Seagrasses provide an important source of food and shelter for marine animals, help fight erosion of the sediments that form the sea bed, and filter bacterial pathogens from the water. They also take up carbon dioxide as part of their daytime photosynthetic activity.

Research has already demonstrated that the estuaries and bays of California's coastline are experiencing ocean acidification. So, the team set out to test the theory that carbon dioxide uptake by seagrass meadows could buffer the pH of the ocean water in their immediate surroundings and help to fight off the effects of acidification in the short term.

They combined data from seagrass meadows in Tomales Bay, an inlet of the Pacific Ocean in California's Marin County, with sophisticated modeling tools that accounted for a variety of factors including, the amount of seagrass within the meadow, seasonal variation in photosynthetic activity and nighttime respiration, water depth, and tidal currents.

"Local stakeholders, such as California's shellfish industry, want to know whether seagrass meadows may help to counteract ocean acidification," Koweek said. "Our results suggest that seagrass meadows along the California coast will likely offer only limited ability to counteract ocean acidification over long periods of time."

On average, the computer simulations predicted that the seagrass meadows would turn back the clock on ocean acidification a few decades, a small offset to the more than 150 years of acidification--a process that is now happening more quickly than ever with increasing fossil fuel emissions.

However, there were small time windows where their models show that seagrass meadows were able to offer much greater buffering. These occurred during periods when low tides occurred during the daytime when photosynthesis occurs. Koweek and Caldeira say that these offer important opportunities.

This level of buffering could make an impact in aquaculture endeavors or even in natural shellfish communities where marine organisms are able to align their calcification activity with the seagrass buffering periods.

"We are starting to understand that some marine organisms, such as blue mussels, are actually able to shift the time of day in which they do most of their calcification. If other organisms are able to do the same, then even brief windows of significant ocean acidification buffering by seagrass meadows may bring substantial benefits to the organisms that live in them", Koweek said.

Koweek and Caldeira are grounded in their optimism for solutions to stop ocean acidification around the world.

"Of course, the only way to truly fight ocean acidification is to rapidly and permanently reduce the rate at which we are spewing carbon dioxide emissions into the sky," Caldeira noted.

"However," added Koweek, "seagrass meadows are a critical part of California's coastline. Although our results indicate that seagrass meadows along the California coast are not likely to offer long-term buffering to fight ocean acidification, their enduring role as habitat for marine organisms, protectors against sea level rise, and magnets of biodiversity should be more than enough reason to restore and protect these iconic ecosystems."

###

The paper's other co-authors are: Richard Zimmerman of Old Dominion University; Kathryn Hewett, Brian Gaylord, and John. J. Stachowicz of University of California Davis; Sarah Giddings of University of California San Diego's Scripps Institution of Oceanography; Kerry Nickols of California State University Northridge; Jennifer Ruesink of University of Washington; and Yuichiro Takeshita of the Monterey Bay Aquarium Research Institute.

This work is a contribution of the Seagrass Ocean Acidification Amelioration Workshop of the Bodega Marine Laboratory, financial support for which was provided by California Sea Grant and the Coastal & Marine Sciences Institute of the University of California, Davis. Partial support was provided by the National Science Foundation.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

David Koweek | EurekAlert!

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>