Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California’s troubled waters

16.12.2009
Satellite-based findings by UCI, NASA reveal significant groundwater loss in Central Valley

New space observations reveal that since October 2003, the aquifers for California’s primary agricultural region – the Central Valley – and its major mountain water source – the Sierra Nevada – have lost nearly enough water combined to fill Lake Mead, America’s largest reservoir. The findings, based on satellite data, reflect California’s extended drought and increased pumping of groundwater for human uses such as irrigation.

At the American Geophysical Union meeting this week in San Francisco, UC Irvine and NASA scientists detailed the state’s groundwater changes and outlined research on other global aquifers conducted via twin satellites called the Gravity Recovery and Climate Experiment. GRACE monitors tiny month-to-month differences in Earth’s gravity field primarily caused by the movement of water in the planet’s land, ocean, ice and atmosphere. Its ability to “weigh” changes in water content provides new insights into how climate change is affecting Earth’s water cycle.

Combined, California’s Sacramento and San Joaquin drainage basins have shed more than 30 cubic kilometers of water since late 2003, said Jay Famiglietti, UCI Earth system science professor and director of the UC Center for Hydrologic Modeling. A cubic kilometer is about 264.2 billion gallons, enough to fill 400,000 Olympic-size pools. The bulk of the loss occurred in the state’s agricultural Central Valley. The Central Valley depends on irrigation from both groundwater wells and diverted surface water.

“GRACE data reveal groundwater in these basins is being pumped for irrigation at rates that are not sustainable if current trends continue,” Famiglietti said. “This is leading to declining water tables, water shortages, decreasing crop sizes and continued land subsidence. The findings have major implications for the U.S. economy, as California’s Central Valley is home to one-sixth of all U.S. irrigated land and the state leads the nation in agricultural production and exports.”

“By providing data on large-scale groundwater depletion rates, GRACE can help California water managers make informed decisions about allocating water resources,” said project scientist Michael Watkins of NASA’s Jet Propulsion Laboratory.

Preliminary studies show most of the water loss is coming from the more southerly located San Joaquin basin, which gets less precipitation than the Sacramento River basin farther north. Initial results indicate the Sacramento River basin is losing about 2 cubic kilometers of water a year. Surface water losses account for half of this, while groundwater losses in the northern Central Valley add another 0.6 cubic kilometers annually. The San Joaquin basin is losing 3.5 cubic kilometers a year. More than 75 percent of this is due to groundwater pumping in the southern Central Valley, primarily to irrigate crops.

Famiglietti said recent California legislation decreasing the allocation of surface water to the San Joaquin basin is likely to further increase the region’s reliance on groundwater for irrigation. “This suggests the decreasing groundwater storage trends seen by GRACE will continue for the foreseeable future,” he said.

The California results come just months after Matt Rodell of NASA’s Goddard Space Flight Center, Isabella Velicogna of UCI, and Famiglietti found groundwater levels in northwest India declining by 17.7 cubic kilometers per year between October 2002 and August 2008, a loss attributed almost entirely to pumping and consumption of groundwater by humans.

“California and India are just two of many regions around the world where GRACE data are being used to study droughts, which can have devastating impacts on societies and cost the U.S. economy $6 billion to $8 billion annually,” said Rodell, who was Famiglietti’s doctoral student at the University of Texas at Austin.

Other regions under study include the southeastern U.S., where GRACE clearly captured the evolution of an extended drought that ended this spring; Australia; and the Middle East-North Africa region. There, Rodell is leading an effort to assess regional water resources by using GRACE and other data to systematically map water and weather-related variables. He said GRACE may also help predict droughts, since it can identify pre-existing conditions favorable to the start of a drought, such as a deficit of water deep below ground.

GRACE is a NASA/German Aerospace Center (DLR) partnership. The University of Texas Center for Space Research has overall mission responsibility. JPL developed the satellites; DLR provided the launch; and GeoForschungsZentrum Potsdam, Germany, operates the mission. For more on GRACE, see http://www.csr.utexas.edu/grace/ and http://grace.jpl.nasa.gov/.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.today.uci.edu

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>