Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakup of supercontinent Pangea cooled mantle and thinned crust

14.12.2016

The oceanic crust produced by the Earth today is significantly thinner than crust made 170 million years ago during the time of the supercontinent Pangea, according to University of Texas at Austin researchers.

The thinning is related to the cooling of Earth's interior prompted by the splitting of the supercontinent Pangaea, which broke up into the continents that we have today, said Harm Van Avendonk, the lead author of the study and a senior research scientist at The University of Texas Institute for Geophysics. The findings, published in Nature Geosciences on Dec. 12, shed light on how plate tectonics has influenced the cooling of the Earth's mantle throughout geologic history.


Researchers at the University of Texas Institute for Geophysics used the location of seismic refraction data (circles) and mantle hotspots (white stars) to examine whether mid-plate volcanism substantially influenced the thickness of aged ocean crust. The modern mid-ocean ridge system is marked by a yellow line. Areas in violet outline large igneous provinces.

Credit: The University of Texas at Austin Jackson School of Geosciences

"What we think is happening is that the supercontinent was like an insulating blanket," Van Avendonk said. "So when these continents started opening up and the deeper mantle was exposed, more or less, to the atmosphere and the ocean it started cooling much faster."

All authors are from the University of Texas Institute for Geophysics (UTIG), a research unit of the Jackson School of Geosciences.

The mantle is the very hot, but mostly solid, layer of rock between the Earth's crust and core. Magma from the mantle forms oceanic crust when it rises from the mantle to the surface at spreading centers and cools into the rock that forms the very bottom of the seafloor. Since about 2.5 billion years ago, the mantle has been cooling --a phenomenon that doesn't influence the climate on the surface of the Earth and has nothing to do with the issue of short-term man-made climate change.

This study suggests that since the breakup of Pangea, the cooling rate of the mantle has increased from 6-11 degrees Celsius per 100 million years to 15-20 degrees per 100 million years. Since cooler mantle temperatures generally produce less magma, it's a trend that's making modern day ocean crust thinner.

"It's important to note the Earth seems to be cooling a lot faster now than it has been over its lifetime," Van Avendonk said. "The current state of the Earth, where we have a lot of plate tectonic events, this allows the Earth to cool much more efficiently than it did in the past."

The research that led to the connection between the splitting of the supercontinent and crust thickness started when Van Avendock and Ph.D. student Jennifer Harding, a study co-author, noticed an unexpected trend when studying existing data from young and old seafloor. They analyzed 234 measurements of crustal thickness from around the world and found that, on a global scale, the oldest ocean crust examined--170 million year old rock created in the Jurassic--is about one mile thicker than the crust that's being produced today.

"It's something that Jenny and I found, more or less, by accident," Van Avendonk said.

The link between crust thickness and age prompted two possible explanations--both related to the fact that hotter mantle tends to make more magma: Mantle hot spots--highly volcanic regions, such as the Hawaiian Islands and Iceland--could have thickened the old crust by covering it in layers of lava at a later time. Or, the mantle was hotter in the Jurassic than it is now.

Van Avendonk mentioned this problem during a casual conversation with Joshua "Bud" Davis, a Ph.D. student in UTIG's plate tectonics research group and co-author, who said that the group could investigate both of the explanations using computer models of plate movement since the Jurassic and a global database of hotspots.

The analysis ruled out the hot spot theory--thick layers of old crust formed just as easily at distances greater than 600 miles from hotspots, a distance that the researchers judged was outside the influence of the hotspots. In contrast, the analysis supported the hypothesis of mantle heating during the age of Pangea, and mantle cooling after the breakup of the supercontinent.

The finding that splitting up Pangea cooled the mantle is important because it gives a more nuanced view of the mantle temperature that influences tectonics on Earth, Van Avendonk said. The researchers also note that the study illustrates the success that can come from spontaneous collaboration and leveraging basic research on a global scale.

"A cool part of this study is that it didn't need funding," Harding said. "We went through all the literature, and collected all the data ourselves. There's always more information out there."

Media Contact

Anton Caputo
anton.caputo@jsg.utexas.edu
210-602-2085

 @UTAustin

http://www.utexas.edu 

Anton Caputo | EurekAlert!

Further reports about: Geophysics geosciences hotspots magma mantle plate tectonics seafloor supercontinent

More articles from Earth Sciences:

nachricht Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle
23.07.2018 | University of Kansas

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>