Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in Crystal Structure Prediction Supports Theory on Neptune's Interior Heat

06.01.2011
USPEX Helps to Solve Long-Standing Mystery of Planet Neptune’s Excessive Heat

Stony Brook University Professor of Geosciences and Physics, Artem Oganov, along with several colleagues, appears to have solved the long-standing mystery of excessive heat on the planet Neptune. Using Oganov’s innovative method for crystal structure prediction, the researchers have established support for theory that the sinking of massive amounts of diamond in Neptune’s interior creates its heat.

Professor Oganov’s unique prediction method, Universal Structure Predictor: Evolutionary Xtallography—or USPEX—solves a central problem of computational materials science, namely the prediction of stable crystal structures while having only the chemical formula.

"Professor Oganov and his collaborators have developed a simple and elegant modeling approach that opens new perspectives in materials sciences," says Professor Gilles Frapper, leader of the theoretical chemistry group, Laboratory of Catalysis in Organic Chemistry, at Poitiers University in France. "USPEX provides great opportunities to predict the structure of compounds simply starting from a chemical formula and letting the ‘evolutionary code’ work."

"Results in this work are extremely interesting and are expected to help in developing realistic models of internal evolution and energetics of planets like Neptune and Uranus," notes Professor Aitor Bergara, a faculty member at the Science and Technology and Donostia International Physics Center (DIPC) at the University of the Basque Country in Spain.

Oganov's team made the first major step in solving this problem in 2006 with their development of a powerful evolutionary algorithm that finds the stable structure using ideas inspired by biological evolution. This method has been called "revolutionary" by some scientists, and Oganov's simulation program, distributed free on his website, is now used by more than 250 researchers worldwide.

The latest development greatly speeds up the search and enables unprecedentedly complex systems to be treated.

"The USPEX method becomes extremely powerful to predict the most stable crystal structures," notes Professor Bergara. "This method is completely ab initio, does not require experimental information and is based on the ideas of natural evolution: the computer generates dozens of initial structures, but only the most preferred ones are allowed to mate and mutate before starting the process, until the best candidates are finally obtained.

"USPEX is becoming very popular among the scientific community and is being widely used all over the world," notes Professor Bergara.

"The key to success was to learn from nature," says Andriy O. Lyakhov, a postdoctoral student at Stony Brook University and a member of Oganov’s research team. "Evolutionary algorithms in general are inspired by the living world, and there is more to learn from crystallography itself."

Oganov's method has already been applied to a range of materials, leading to numerous predictions that looked impossible within traditional chemistry, yet were confirmed by subsequent experiments. The research has yielded over 50 publications, many in Nature, Physical Review Letters and PNAS, and include the following: the prediction of startling transformation of metallic sodium into a transparent non-metallic material under pressure; discovery of a partially ionic form of a pure element (boron); prediction of very unusual high-pressure states of calcium; discovery of a new allotropic structure of carbon; and predicted stability of certain unusual Li-H compounds.

The most recent developments enable structure predictions for nanoparticles and surfaces that have the potential to revolutionize the development of new technologies.

"This is a very exciting time," says Professor Oganov. "What was thought to be impossible yesterday is now becoming possible, including the discovery of new materials on the computer.” He adds, "We can even study processes that take place in deep interiors of remote planets, as the study of diamond formation on Neptune shows."

Professor Frapper concurs.

"This is a very exciting time for chemists," he says. "Oganov’s breakthrough will play a major role in material design."

"Modern Methods of Crystal Structure Prediction", edited by Artem Oganov, has just been published (November 2010) by Wiley-VCH Publishing in Berlin, Germany. The book provides a summary of the major achievements in recent years, as well as the challenges that still remain.

[1] Gao G., Oganov A.R., Wang H., Li P., Ma Y., Cui T., Zou G. (2010). Dissociation of methane under high pressure. J. Chem. Phys. 133, 144508.
[2] Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, art. 244704
[3] Lyakhov A.O., Oganov A.R., Valle M. (2010). How to predict very large and complex crystal structures. Comp. Phys. Comm. 181, 1623-1632
[4] Oganov A.R. (Editor). Modern Methods of Crystal Structure Prediction. Berlin: Wiley-VCH. ISBN: 978-3-527-40939-6. (2010).

[5] USPEX code: http://han.ess.sunysb.edu/~USPEX/

Media Relations Office | Newswise Science News
Further information:
http://www.stonybrook.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>