Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018

UChicago researchers use quantum simulations to more accurately predict water properties

Deep inside the Earth exist pockets of water, but the liquid there isn't like the water on the surface.


Water under extreme pressure and temperatures displays odd properties, which were modeled by University of Chicago scientists.

Credit: Peter Allen

When exposed to unimaginably high temperatures and pressures, water exhibits all sorts of weird phases and properties, from remaining a liquid at temperatures 10 times higher than the boiling point to existing as a liquid and a solid at the same time.

This strange world is still not fully understood, but a team of University of Chicago scientists ran quantum simulations to develop a new model of the behavior of water at extremely high temperatures and pressures. The computational measurements, published June 18 in the Proceedings of the National Academy of Sciences, should help scientists understand water's role in the makeup of the mantle and potentially in other planets.

"Subtle physics at the molecular level can impact properties of matter deep inside planets," said Viktor Rozsa, a UChicago graduate student and first author on the paper. "How water reacts and transports charge on a molecular scale affects our understanding of phenomena ranging from the movement of magma, water and other fluids to the magnetic field of the entire planet."

Under the conditions considered in the study--more than 40 times hotter than our everyday conditions and 100,000 times greater than atmospheric pressure--water is regularly ripping apart and re-forming its own chemical bonds. The result is that it can interact very differently with other minerals than it does on the surface of the earth.

Scientists have been trying to pin down exactly how these atoms interact for decades: It's extremely difficult to test experimentally, as water can react with the instrument itself. "It's surprising how little we know about water below the crust," said lead author Giulia Galli, the Liew Family Professor of Molecular Engineering and professor of chemistry at UChicago and a senior scientist at Argonne National Laboratory.

But water in these conditions exists throughout the mantle--it's possible there may be more water distributed inside the Earth than there is in the oceans--and scientists would like to know exactly how it behaves in order to understand its role in the Earth and how it moves through the mantle.

Galli's group built a model by performing quantum mechanical simulations of a small set of water molecules at extremely high pressures and temperatures--in the range of what you need to synthesize a diamond.

Their model, built with the aid of simulations performed at the Research Computing Center at UChicago, provides an explanation for some of water's more mysterious properties at such pressures, such as the connection between bizarrely high conductivity and how its molecules disassociate and re-associate.

It also predicts and analyzes a controversial set of measurements called the vibrational spectroscopic signatures of water, or fingerprints of molecular movement that lay out how molecules are interacting and moving.

In addition to furthering understanding of our own planet, Galli said, "the ability to do the kind of simulations performed in our paper could have important consequences on modeling exoplanets." Many scientists, including those at UChicago, are narrowing the conditions for distant planets that might have the conditions to create life, and much of this search revolves around water.

Galli is a member of the research team in the Institute for Molecular Engineering's water theme, led by James Skinner, the Crown Family Professor of Molecular Engineering. The team seeks to understand the physical, chemical and biological manifestations of water, and to develop applications from innovative purification filters, to new materials for desalination and lithium ion harvesting, to new catalysts for water chemistry and disinfection.

While water is everywhere and intensively important to us, Galli said, it is notoriously difficult to simulate and study: "This is one step in the long journey to understanding."

###

Other authors on the study were UChicago postdoctoral researcher Federico Giberti and Ding Pan, a former postdoctoral associate and now a professor at the Hong Kong University of Science and Technology.

Media Contact

Louise Lerner
louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Louise Lerner | EurekAlert!
Further information:
https://news.uchicago.edu/story/better-model-water-under-extreme-conditions-could-aid-understanding-earths-mantle
http://dx.doi.org/10.1073/pnas.1800123115

More articles from Earth Sciences:

nachricht Turbulence creates ice in clouds
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Manganese nodules: project on environmental impact during deep sea mining
08.11.2019 | Jacobs University Bremen gGmbH

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>