Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018

UChicago researchers use quantum simulations to more accurately predict water properties

Deep inside the Earth exist pockets of water, but the liquid there isn't like the water on the surface.


Water under extreme pressure and temperatures displays odd properties, which were modeled by University of Chicago scientists.

Credit: Peter Allen

When exposed to unimaginably high temperatures and pressures, water exhibits all sorts of weird phases and properties, from remaining a liquid at temperatures 10 times higher than the boiling point to existing as a liquid and a solid at the same time.

This strange world is still not fully understood, but a team of University of Chicago scientists ran quantum simulations to develop a new model of the behavior of water at extremely high temperatures and pressures. The computational measurements, published June 18 in the Proceedings of the National Academy of Sciences, should help scientists understand water's role in the makeup of the mantle and potentially in other planets.

"Subtle physics at the molecular level can impact properties of matter deep inside planets," said Viktor Rozsa, a UChicago graduate student and first author on the paper. "How water reacts and transports charge on a molecular scale affects our understanding of phenomena ranging from the movement of magma, water and other fluids to the magnetic field of the entire planet."

Under the conditions considered in the study--more than 40 times hotter than our everyday conditions and 100,000 times greater than atmospheric pressure--water is regularly ripping apart and re-forming its own chemical bonds. The result is that it can interact very differently with other minerals than it does on the surface of the earth.

Scientists have been trying to pin down exactly how these atoms interact for decades: It's extremely difficult to test experimentally, as water can react with the instrument itself. "It's surprising how little we know about water below the crust," said lead author Giulia Galli, the Liew Family Professor of Molecular Engineering and professor of chemistry at UChicago and a senior scientist at Argonne National Laboratory.

But water in these conditions exists throughout the mantle--it's possible there may be more water distributed inside the Earth than there is in the oceans--and scientists would like to know exactly how it behaves in order to understand its role in the Earth and how it moves through the mantle.

Galli's group built a model by performing quantum mechanical simulations of a small set of water molecules at extremely high pressures and temperatures--in the range of what you need to synthesize a diamond.

Their model, built with the aid of simulations performed at the Research Computing Center at UChicago, provides an explanation for some of water's more mysterious properties at such pressures, such as the connection between bizarrely high conductivity and how its molecules disassociate and re-associate.

It also predicts and analyzes a controversial set of measurements called the vibrational spectroscopic signatures of water, or fingerprints of molecular movement that lay out how molecules are interacting and moving.

In addition to furthering understanding of our own planet, Galli said, "the ability to do the kind of simulations performed in our paper could have important consequences on modeling exoplanets." Many scientists, including those at UChicago, are narrowing the conditions for distant planets that might have the conditions to create life, and much of this search revolves around water.

Galli is a member of the research team in the Institute for Molecular Engineering's water theme, led by James Skinner, the Crown Family Professor of Molecular Engineering. The team seeks to understand the physical, chemical and biological manifestations of water, and to develop applications from innovative purification filters, to new materials for desalination and lithium ion harvesting, to new catalysts for water chemistry and disinfection.

While water is everywhere and intensively important to us, Galli said, it is notoriously difficult to simulate and study: "This is one step in the long journey to understanding."

###

Other authors on the study were UChicago postdoctoral researcher Federico Giberti and Ding Pan, a former postdoctoral associate and now a professor at the Hong Kong University of Science and Technology.

Media Contact

Louise Lerner
louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Louise Lerner | EurekAlert!
Further information:
https://news.uchicago.edu/story/better-model-water-under-extreme-conditions-could-aid-understanding-earths-mantle
http://dx.doi.org/10.1073/pnas.1800123115

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>