Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars’ atmosphere well protected from the solar wind

08.12.2017

Despite the absence of a global Earth-like magnetic dipole, the Martian atmosphere is well protected from the effects of the solar wind on ion escape from the planet. New research shows this using measurements from the Swedish particle instrument ASPERA-3 on the Mars Express spacecraft. The results have recently been presented in a doctoral thesis by Robin Ramstad, Swedish Institute of Space Physics and Umeå University, Sweden.

Present-day Mars is a cold and dry planet with less than 1% of Earth’s atmospheric pressure at the surface. However many geological features indicate the planet had an active hydrological cycle about 3-4 billion years ago. An active hydrological cycle would have required a warmer climate in the planet’s early history and therefore a thicker atmosphere, one capable of creating a strong greenhouse effect.


Left: Charged particles from the sun (the solar wind) form an induced magnetosphere round Mars, which unlike the sun does not have its own intrinsic magnetic field (artwork: Anastasia Grigoryeva).

Right: Robin Ramstad points out the position of the Swedish instrument ASPERA-3 on a model of the Mars Express spacecraft (photo: Anastasia Grigoryeva)

A common hypothesis maintains that the solar wind over time has eroded the early Martian atmosphere, causing the greenhouse effect, and thus the hydrological cycle, to collapse. Unlike Earth, Mars has no global magnetic dipole, but the solar wind instead induces currents in the ionized upper atmosphere (the ionosphere), creating an induced magnetosphere.

“It has long been thought that this induced magnetosphere is insufficient to protect the Martian atmosphere,” says Robin Ramstad. “However our measurements show something different.”

The Swedish-led ion mass analyser on Mars Express has been measuring the ion escape from Mars since 2004. In his research, Robin Ramstad has combined and compared measurements of the ion escape under varying solar wind conditions and levels of ionizing solar radiation, so-called extreme ultraviolet (EUV) radiation.

The results show that the solar wind has a comparatively small effect on the ion escape rate, which instead mainly depends on the EUV radiation. This has a large effect on estimations of the total amount of atmosphere that has escaped to space.

“Despite stronger solar wind and EUV-radiation levels under the early Sun, ion escape can not explain more than 0.006 bar of atmospheric pressure lost over the course of 3.9 billion years,” says Robin Ramstad. “Even our upper estimate, 0.01 bar, is an insignificant amount in comparison to the atmosphere required to maintain a sufficiently strong greenhouse effect, about 1 bar or more according to climate models.”

The results presented in the thesis show that a stronger solar wind mainly accelerates particles already escaping the planet’s gravity, but does not increase the ion escape rate. Contrary to previous assumptions, the induced magnetosphere is also shown to protect the bulk of the Martian ionosphere from solar wind energy transfer.
Robin Ramstad is from from Västerås in Sweden and has a Master of Science degree in Engineering Physics from Luleå University of Technology.
Thesis defence

On Friday 8 December 2017 Robin Ramstad of the Swedish Institute of Space Physics in Kiruna and Umeå University will defend his PhD thesis entitled Ion escape from Mars: measurements in the present to understand the past.
The thesis defence will take place at 9 am in the Aula at the Swedish Institute of Space Physics in Kiruna.

The faculty opponent is Assoc. Prof. David Brain, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA. The candidate’s supervisors are Prof. Stas Barabash and Assoc. Prof. Yoshifumi Futaana at the Swedish Institute of Space Physics, Kiruna.

More information:
Robin Ramstad, Swedish Institute of Space Physics, robin@irf.se, tel. +46-980-79115
Rick McGregor, Information Officer, Swedish Institute of Space Physics, rick@irf.se, tel. +46-980-79178

Weitere Informationen:

Information about the defence and a link to the thesis: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-141892
IRF’s Mars Express web page: http://www.irf.se/link/MEX_press
AGU Editor’s Highlight of Robin Ramstad’s GRL paper: https://eos.org/editor-highlights/where-did-the-water-go-on-mars

Rick McGregor | idw - Informationsdienst Wissenschaft
Further information:
http://www.vr.se

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

Loss of identity in immune cells explained

18.02.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>