Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Banded Rocks Reveal Early Earth Conditions, Changes

13.10.2009
The strikingly banded rocks scattered across the upper Midwest and elsewhere throughout the world are actually ambassadors from the past, offering clues to the environment of the early Earth more than 2 billion years ago.

Called banded iron formations or BIFs, these ancient rocks formed between 3.8 and 1.7 billion years ago at what was then the bottom of the ocean. The stripes represent alternating layers of silica-rich chert and iron-rich minerals like hematite and magnetite.

First mined as a major iron source for modern industrialization, BIFs are also a rich source of information about the geochemical conditions that existed on Earth when the rocks were made. However, interpreting their clues requires understanding how the bands formed, a topic that has been controversial for decades, says Huifang Xu, a geology professor at the University of Wisconsin-Madison.

A study appearing today (Oct. 11) as an advance online publication in Nature Geoscience offers a new picture of how these colorful bands developed and what they reveal about the composition of the early ocean floor, seawater, and atmosphere during the evolution of the Earth.

Previous hypotheses about band formation involved seasonal fluctuations, temperature shifts, or periodic blooms of microorganisms, all of which left many open questions about how BIFs dominated the global marine landscape for two billion years and why they abruptly disappeared 1.7 billion years ago.

With Yifeng Wang of Sandia National Laboratories, Enrique Merino of Indiana University and UW-Madison postdoc Hiromi Konishi, Xu developed a BIF formation model that offers a more complete picture of the environment at the time, including interactions between rocks, water, and air.

“They are all connected,” Xu explains. “The lithosphere affects the hydrosphere, the hydrosphere affects the atmosphere, and all those eventually affect the biosphere on the early Earth.”

Their model shows how BIFs could have formed when hydrothermal fluids, from interactions between seawater and hot oceanic crust from deep in the Earth’s mantle, mixed with surface seawater. This mixing triggered the oscillating production of iron- and silica-rich minerals, which were deposited in layers on the seafloor.

They used a series of thermodynamic calculations to determine that the source material for BIFs must have come from oceanic rocks with a very low aluminum content, unlike modern oceanic basalts that contain high levels of aluminum.

“The modern-day ocean floor is basalt, common black basalt like the Hawaiian islands. But during that time, there was also a strange kind of rock called komatiites,” says Xu. “When ocean water reacts with that kind of rock, it can produce about equal amounts of iron and silica” — a composition ideally suited to making BIFs.

Such a mixture can create distinct alternating layers — which range in thickness from 10 micrometers to about 1 centimeter — due to a constantly shifting state that, like a competition between two well-matched players, resists resolving to a single outcome and instead see-saws between two extremes.

BIFs dominated the global oceans 3.8 to 1.7 billion years ago, a time period known to geologists as the Archaean-Early Proterozoic, then abruptly disappeared from the geologic record. Their absence in more recent rocks indicates that the geochemical conditions changed around 1.7 billion years ago, Xu says.

This change likely had wide-ranging effects on the physical and biological composition of the Earth. For example, the end of BIF deposition would have starved iron-dependent bacteria and shifted in favor of microbes with sulfur-based metabolisms. In addition, chemical and pH changes in the ocean and rising atmospheric oxygen may have allowed the emergence and spread of oxygen-dependent organisms.

The new study was partly funded by the NASA Astrobiology Institute, and Xu hopes to look for biosignatures trapped in the rock bands for additional clues to the changes that occurred 1.7 billion years ago and what may have triggered them.

Additional support was provided by the National Science Foundation and the U.S. Department of Energy.

CONTACT: Huifang Xu, hfxu@geology.wisc.edu, 608-265-5887

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>