Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad sign for global warming: Thawing permafrost holds vast carbon pool

05.09.2008
Permafrost blanketing the northern hemisphere contains more than twice the amount of carbon in the atmosphere, making it a potentially mammoth contributor to global climate change depending on how quickly it thaws.

So concludes a group of nearly two dozen scientists in a paper appearing this week in the journal Bioscience. The lead author is Ted Schuur, an associate professor of ecology at the University of Florida.

Previous studies by Schuur and his colleagues elsewhere have estimated the carbon contained in permafrost in northeast Siberia. The new research expands that estimate to the rest of the permafrost-covered northern latitudes of Russia, Europe, Greenland and North America. The estimated 1,672 billion metric tons of carbon locked up in the permafrost is more than double the 780 billion tons in the atmosphere today.

"It's bigger than we thought," Schuur said.

Permafrost is frozen ground that contains roots and other soil organic matter that decompose extremely slowly. When it thaws, bacteria and fungi break down carbon contained in this organic matter much more quickly, releasing it to the atmosphere as carbon dioxide or methane, both greenhouse gases.

Scientists have become increasingly concerned about this natural process as temperatures in the world's most northern latitudes have warmed. Just last week, it was announced that the amount of sea ice covering the Arctic may reach a new low this summer. Meanwhile, there is widespread consensus that the highest latitudes will warm the fastest, a process already visible in the accelerated thawing of glaciers worldwide.

Two years ago, Schuur and two colleagues authored a paper in the journal Science estimating that 400,000 square miles of northeast Siberian permafrost contained 500 billion metric tons of carbon. For this new paper, scientists combined an extensive database of measurements of carbon content in different types of permafrost soils with the estimated spatial extent of those soils in Russia, Europe, Greenland and North America.

Schuur said the researchers estimated the carbon contained in permafrost to a depth of three meters, two meters deeper than many earlier estimates. Although permafrost depths vary greatly with location, basing the estimate on three-meter depth "better acknowledges the true size of the permafrost carbon pool," Schuur said.

The new estimate is important because it mirrors other climate change science suggesting that at a certain tipping point, natural processes could contribute significant amounts of greenhouse gases, supplementing human-influenced, industrial processes that release fossil fuel carbon, Schuur said.

"There are relatively few people living in the permafrost zone," Schuur said. "But we could have significant emissions of carbon from thawing permafrost in these remote regions."

How fast the permafrost would release its carbon is a hugely important question.

Schuur said the burning of fossil fuels contributes about 8.5 billion tons of carbon dioxide each year. Deforestation of the tropical forests and replacement of the forest with pasture or other agriculture is thought to add about 1.5 billion tons per year. How much permafrost will add will depend on how fast it thaws, but Schuur said his research indicates the figure could approach .8-1.1 billion tons per year in the future if permafrost continues to thaw.

With the Arctic warming and permafrost thawing, shrubs and trees are likely to grow on ground formerly occupied by tundra – indeed, such a transformation has already been observed in parts of Alaska, where some arctic tundra is becoming shrub land.

Because plants take in carbon dioxide and release oxygen, it might appear they could compensate for whatever carbon is released by the thawed permafrost. But Schuur said the amount of carbon stored in the permafrost is far greater than what is found in shrubs or trees.

For example, he said, a mature boreal forest may contain five kilograms per meter squared of stored carbon. But the same area of permafrost soil can contain 44 kilograms, and 80 percent of that could be lost over long-term warming. "The bottom line," he said, "is that you can't grow a big enough forest to offset the carbon release from the permafrost."

Ted Schuur | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht New studies increase confidence in NASA's measure of Earth's temperature
24.05.2019 | NASA/Goddard Space Flight Center

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>