Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Babe Ruth and earthquake hazard maps

30.10.2015

Northwestern University researchers have turned to an unusual source -- Major League Baseball -- to help learn why maps used to predict shaking in future earthquakes often do poorly.

Earthquake hazard maps use assumptions about where, when, and how big future earthquakes will be to predict the level of shaking. The results are used in designing earthquake-resistant buildings.


Here is a comparison of Japanese national earthquake hazard map (top) to uniform and randomized versions. The map predicts the level of shaking, shown by colors from red (highest) to white (least) expected to be exceeded at 5% of the sites on the map in the next 50 years. Surprisingly, by the most commonly used measure, the uniform and randomized maps work better than the published maps.

Image courtesy of Seth Stein, Northwestern University.

However, as the study's lead author, earth science and statistics graduate student Edward Brooks, explains "sometimes the maps do well, and sometimes they do poorly. In particular, the shaking and thus damage in some recent large earthquakes was much larger than expected."

Part of the problem is that seismologists have not developed ways to describe how well these maps perform. As Seth Stein, William Deering Professor of Geological Sciences explains "we need the kind of information the weather service has, where they can tell you how much confidence to have in their forecasts."

The question is how to measure performance. Bruce Spencer, professor of statistics, explains that "it's like asking how good a baseball player Babe Ruth was. The answer depends on how one measures performance. In many seasons Ruth led the league in both home runs and in the number of times he struck out. By one measure he did very well, and by another, very poorly. In the same way, we are using several measures to describe how hazard maps perform."

Another problem is that the hazard maps try to forecast shaking over hundreds over years, because buildings have long lifetimes. As a result, it takes a long time to tell how well a map is working. To get around this, the team looked backwards in time, using records of earthquake shaking in Japan that go back 500 years.

They compared the shaking to the forecasts of the published hazard maps. They also compared the shaking to maps in which the expected shaking was the same everywhere in Japan, and maps in which the expected shaking at places was assigned at random from the published maps.

The results were surprising. In Brook's words "it turns out that by the most commonly used measure using the uniform and randomized maps work better than the published maps. By another measure, the published maps work better."

The message, in Stein's view, is that seismologists need to know a lot more about how these maps work. "Some of the problem is likely to be that how earthquakes occur in space and time is more complicated that the maps assume. Until we get a better handle on this, people using earthquake hazard maps should recognize that they have large uncertainties. Brightly colored maps look good, but the earth doesn't have to obey them and sometimes won't."

###

This research will be presented at the 2015 Annual Meeting of the Geological Society of America in Baltimore, MD, as part of the Bridging Two Continents joint "meeting-within-a meeting" with the Geological Society of China.

CONTACTS:

Edward Brooks, eddie@earth.northwestern.edu, 215-630-5436
Seth Stein, s-stein@northwestern.edu, 847-308-3806

WHAT:

Session 6
Active Intracontinental Tectonics in Asia and North America and the Associated Geohazards
session link: https://gsa.confex.com/gsa/2015AM/webprogram/Session38003.html

Paper 6-12, Using Historical Intensity Data To Assess Long-Term Performance of Earthquake Hazard Maps
Abstract link: https://gsa.confex.com/gsa/2015AM/webprogram/Paper262579.html

WHERE & WHEN:

Sunday, 1 November 2015: 8:00 AM-12:00 PM
Room 349/350 (Baltimore Convention Center)
Presentation Time: 11:20 AM

The Geological Society of America, founded in 1888, serves more than 27,000 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind. GSA encourages cooperative research among earth, life, planetary, and social scientists, fosters public dialogue on geoscience issues, and supports all levels of earth science education.

Figure caption: Comparison of Japanese national earthquake hazard map (top) to uniform and randomized versions. The map predicts the level of shaking, shown by colors from red (highest) to white (least) expected to be exceeded at 5% of the sites on the map in the next 50 years. Surprisingly, by the most commonly used measure, the uniform and randomized maps work better than the published maps. Image courtesy of Seth Stein, Northwestern University.

Media Contact

Christa Stratton
cstratton@geosociety.org
303-357-1093

 @geosociety

http://www.geosociety.org 

Christa Stratton | EurekAlert!

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>