Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells

21.10.2019

Fluctuations in atmospheric pressure can heavily influence how much natural gas leaks from wells below the ground surface at oil and gas sites, according to new University of British Columbia research. However, current monitoring strategies do not take this phenomenon into account, and therefore may be under- or over-estimating the true magnitude of gas emissions.

The unintentional leakage of natural gas from oil and gas wells into the surrounding subsurface - known as fugitive gas migration - is a major environmental concern that can lead to groundwater contamination and the emission of greenhouse gases into the atmosphere.


Fluctuations in atmospheric pressure can heavily influence how much natural gas leaks from wells below the ground surface at oil and gas sites, according to new University of British Columbia research. However, current monitoring strategies do not take this phenomenon into account, and therefore may be under- or over-estimating the true magnitude of gas emissions.

Credit: Aaron Cahill

"Currently, subsurface gas migration is monitored using infrequent or short-term location-restrictive measurements," said Olenka Forde, a geological sciences PhD student at UBC and lead author of the study published in Scientific Reports.

"Our study shows that the magnitude of gas emissions to the atmosphere can depend on atmospheric pressure before and during the time of monitoring, so short-term, one-time measurements may not be representative of average emissions."

Variations in atmospheric pressure tend to compress or expand soil gas, with the most significant impact at sites with deep water tables, explains Forde. During a high-pressure system, soil gas is compressed and pushes leaked natural gas deeper underground, where it will likely not be detected at the surface.

When atmospheric pressure declines, natural gas trapped below the surface during the previous high-pressure conditions can escape to the atmosphere, contributing to greenhouse gas emissions.

To evaluate this effect, the team ran a field experiment in an area of significant historic and ongoing oil and gas development near Hudson's Hope, in northern B.C. Over a period of five days, 30 cubic metres of natural gas (98.3 per cent methane) was continuously injected 12 metres below the ground surface.

Atmospheric pressure and methane emissions were then continuously measured for 24 days during and after gas injection. The researchers controlled for depth and rate of well leakage, which are key factors that influence fugitive gas migration.

"We found that the magnitude and duration of atmospheric pressure changes directly influenced the amount of natural gas coming out the ground and being emitted into the atmosphere," said Forde. "Under high pressure conditions, methane emissions decreased, sometimes even below the detection limit. But when atmospheric pressure decreased, methane emissions increased rapidly - at times more than 20-fold in less than 24 hours."

As a result, continuous monitoring over a longer period of time is key. "This will help to more accurately detect and evaluate gas migrations and emissions and thus, the risks posed by leaking oil and gas wells," said Forde.

There are over four million onshore hydrocarbon wells around the world, a portion of which are known to suffer loss of structural integrity, which can lead to this type of subsurface leakage and resulting greenhouse gas emissions.

"The results of our study allow us to move towards refining and improving regulations and monitoring methods," said co-author Aaron Cahill, co-director of the Energy and Environment Research Initiative at UBC. "This will help determine which leaky wells should be prioritized for remedial action to limit the most substantial greenhouse gas emissions."

###

The study was published in Scientific Reports. Funding for the research was provided by Natural Resources Canada, Geoscience BC, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), and the British Columbia Oil and Gas Commission.

Media Contact

Sachi Wickramasinghe
sachi.wickramasinghe@ubc.ca
604-822-4636

 @UBCnews

http://www.ubc.ca 

Sachi Wickramasinghe | EurekAlert!
Further information:
https://news.ubc.ca/2019/10/18/atmospheric-pressure-impacts-greenhouse-gas-emissions-from-leaky-oil-and-gas-wells-ubc-study/
http://dx.doi.org/10.1038/s41598-019-50426-3

More articles from Earth Sciences:

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>