Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid ice may be 'living fossil' with clues to oceans' origins

29.04.2010
An asteroid may have hit Earth and brought our planet its water

The first-ever discovery of ice and organic molecules on an asteroid may hold clues to the origins of Earth's oceans and life 4 billion years ago.

University of Central Florida researchers detected a thin layer of water ice and organic molecules on the surface of 24 Themis, the largest in a family of asteroids orbiting between Mars and Jupiter.

Their unexpected findings will be published Thursday, April 29 in Nature, which will featuretwo complementary articles by the UCF-led team and by another team of planetary scientists.

"What we've found suggests that an asteroid like this one may have hit Earth and brought our planet its water," said UCF Physics Professor HumbertoCampins, the study's lead author.

Some theories suggest asteroids brought water to Earth after the planet formed dry. Scientists say the salts and water that have been found in some meteorites support this view.

Using NASA's Infrared Telescope Facility in Hawaii, Campins and his team of researchers measured the intensity of the reflected sunlight as 24 Themis rotated. Differences in intensity at different wavelengths helped researchers determine the makeup of the asteroid's surface.

Researchers were surprised to find ice and carbon-based compounds evenly distributed on 24 Themis. More specifically, the discovery of ice is unexpected because surface ice should be short lived on asteroids, which are expected to be too warm for ice to survive for long.

The distance between this asteroid and the sun is about three times greater than between Earth and the sun.

Researchers will continue testing various hypotheses to explain the presence of ice. Perhaps most promising is the possibility that 24 Themis might have preserved the ice in its subsoil, just below the surface, as a kind of "living fossil" or remnant of an early solar system that was generally considered to have disappeared long ago.

Campins' team is made up of scientists from UCF, the University of La Laguna in Spain, University of Southern Maine, University of Maryland, Universidade Federal Do Rio De Janeiro in Brazil, NASA-Ames Research Center and NAIC-Arecibo Observatory in Puerto Rico.

Chad Binette | EurekAlert!
Further information:
http://ww.ucf.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>