Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian ozone pollution in Hawaii is tied to climate variability (Nature Geoscience)

28.01.2014
Air pollution from Asia has been rising for several decades but Hawaii had seemed to escape the ozone pollution that drifts east with the springtime winds. Now a team of researchers has found that shifts in atmospheric circulation explain the trends in Hawaiian ozone pollution.

The researchers found that since the mid-1990s, these shifts in atmospheric circulation have caused Asian ozone pollution reaching Hawaii to be relatively low in spring but rise significantly in autumn. The study, led by Meiyun Lin, an associate research scholar in the Program in Atmospheric and Oceanic Sciences (NOAA) at Princeton University and a scientist at the National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory, was published in Nature Geoscience.


Asian pollution drifts east toward North America in 2010. Hawaii is denoted by the star. (Source: Nature Geoscience)


Researchers found that ozone levels measured during autumn at Mauna Loa Observatory in Hawaii (black line) accurately reflect the trend in rising Asian air pollution from 1975 to 2012. The researchers demonstrated that the autumnal rise in ozone could be explained by atmospheric and climatic shifts over periods of decades. Using a chemistry-climate model, the researchers modeled this autumnal variation in ozone using constant (red) and time-varying (purple) emissions of ozone precursors. (Source: Nature Geoscience.)

“The findings indicate that decade-long variability in climate must be taken into account when attributing U.S. surface ozone trends to rising Asian emissions,” Lin said. She conducted the research with Larry Horowitz and Songmiao Fan of GFDL, Samuel Oltmans of the University of Colorado and the NOAA Earth System Research Laboratory in Boulder; and Arlene Fiore of the Lamont-Doherty Earth Observatory at Columbia University.

Although protective at high altitudes, ozone near the Earth’s surface is a greenhouse gas and a health-damaging air pollutant. The longest record of ozone measurements in the U.S. dates back to 1974 in Hawaii. Over the past few decades, emissions of ozone precursors in Asia has tripled, yet the 40-year Hawaiian record revealed little change in ozone levels during spring, but a surprising rise in autumn.

Through their research, Lin and her colleagues solved the puzzle. “We found that changing wind patterns ‘hide’ the increase in Asian pollution reaching Hawaii in the spring, but amplify the change in the autumn,” Lin said.

Using chemistry-climate models and observations, Lin and her colleagues uncovered the different mechanisms driving spring versus autumn changes in atmospheric circulation patterns. The findings indicate that the flow of ozone-rich air from Eurasia towards Hawaii during spring weakened in the 2000s as a result of La-Niña-like decadal cooling in the equatorial Pacific Ocean. The stronger transport of Asian pollution to Hawaii during autumn since the mid-1990s corresponds to a positive pattern of atmospheric circulation variability known as the Pacific-North American pattern.

“This study not only solves the mystery of Hawaiian ozone changes since 1974, but it also has broad implications for interpreting trends in surface ozone levels globally,” Lin said. “Characterizing shifts in atmospheric circulation is of paramount importance for understanding the response of surface ozone levels to a changing climate and evolving global emissions of ozone precursors,” she said.

The work was supported by NOAA’s Cooperative Institute for Climate Science at Princeton University. Ozone measurements were obtained at Mauna Loa Observatory, operated by NOAA’s Earth System Research Laboratory.

Read the abstract

Meiyun Lin, Larry W. Horowitz, Samuel J. Oltmans, Arlene M. Fiore, Songmiao Fan. Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability. Nature Geoscience, Published Online: 26 January, 2014, http://dx.doi.org/10.1038/ngeo2066.

Catherine Zandonella | EurekAlert!
Further information:
http://www.princeton.edu
http://blogs.princeton.edu/research/2014/01/27/asian-ozone-pollution-in-hawaii-is-tied-to-climate-variability-nature-geoscience/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>