Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic soil reveals climate change clues

09.10.2008
Frozen arctic soil contains nearly twice the greenhouse-gas-producing organic material as was previously estimated, according to recently published research by University of Alaska Fairbanks scientists.

School of Natural Resources & Agricultural Sciences professor Chien-Lu Ping published his latest findings in the Nature Geoscience and Scientific American Web sites. Wielding jackhammers, Ping and a team of scientists dug down more than one meter into the permafrost to take soil samples from more than 100 sites throughout Alaska. Previous research had sampled to about 40 centimeters deep.

After analyzing the samples, the research team discovered a previously undocumented layer of organic matter on top of and in the upper part of permafrost, ranging from 60 to 120 centimeters deep. This deep layer of organic matter first accumulates on the tundra surface and is buried during the churning freeze and thaw cycles that characterize the turbulent arctic landscape.

The resulting patterned ground plays a key role in the dynamics of carbon storage and release, Ping found. When temperatures warm and the arctic soil churns, less carbon from the surface gets to the deeper part of the soil. The carbon already stored in the deeper part of the soil is released into the atmosphere as carbon dioxide, methane and other gases.

Ping predicted that a two- to three-degree rise in air temperatures could cause the arctic tundra to switch from a carbon sink--an area that absorbs more carbon dioxide than it produces--to a carbon source--an area that produces more carbon dioxide than it absorbs. The more organic material stored in the tundra, the greater the potential effect of future releases, Ping stated.

“The distribution of the Arctic carbon pool with regard to the surface, active layer and permafrost has not been evaluated before, but is very relevant in assessing changes that will occur across the Arctic system,” Ping wrote in his study. “Where soil organic carbon is located in the soil profile is especially relevant and useful to climate warming assessments that need to evaluate effects on separate soil processes that vary with temperature and depth throughout the whole annual cycle of seasons.”

Colleagues on the project were Gary Michaelson, UAF Agricultural and Forestry Experiment Station; Mark Jorgenson, Alaska Biological Research; John Kimble, professional soil scientist; Howard Epstein, University of Virginia Department of Environmental Sciences; Vladimir Romanovsky, UAF Geophysical Institute; Donald Walker, UAF Institute of Arctic Biology. Ping’s study also included data from similarly conducted Canadian research.

CONTACT Chien-Lu Ping at the Palmer Research and Extension Center at 907-746-9462 or via e-mail at pfclp@uaa.alaska.edu. Nancy Tarnai, SNRAS public information officer, at 907-474-5042 or via e-mail at fnnjt@uaf.edu

Nancy Tarnai | EurekAlert!
Further information:
http://www.uaf.edu/snras/faculty/ping.html
http://www.uaf.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>