Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic sea ice once again shows considerable melting

15.09.2017

Joint Press Release from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), the University of Bremen, and the University of Hamburg’s Centre for Earth System Research and Sustainability (CEN)

With a minimum extent of ca. 4.7 million square kilometres, Arctic sea ice continues to retreat


Flight campaign 2016: ice thickness measurement (Arctic Ocean)

Photo: Alfred-Wegener-Institut / E. Horvath

This September, the extent of Arctic sea ice shrank to roughly 4.7 million square kilometres, as was determined by researchers at the Alfred Wegener Institute, the University of Bremen and Universität Hamburg. Though slightly larger than last year, the minimum sea ice extent 2017 is average for the past ten years and far below the numbers from 1979 to 2006. The Northeast Passage was traversable for ships without the need for icebreakers.

The sea ice in the Arctic is considered a critical element in climate processes, and a valuable early-warning system for global warming. Accordingly, the September minimum extent is an important indicator of climate change.

Despite an especially warm winter, the current extent of sea ice does not represent a new record low; nevertheless, the amount of ice loss is massive. As sea-ice physicist Marcel Nicolaus from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) explains, “This year’s sea ice extent is again on a very low level: the observed September value of the past eleven years has consistently been lower than in any of the previous years.”

This winter, the Arctic remained unusually warm, and the sea-ice coverage in March was lower than in any March before. “Thanks to the relatively cold summer, the sea ice managed to bounce back somewhat, but this year’s September minimum is by no means a good sign,” stresses Lars Kaleschke from Universität Hamburg’s Center for Earth System Research and Sustainability.

“Though the amount of sea ice is of course subject to natural fluctuations, the long-term decline is obvious.” For comparison, the summertime minimums in the 1970s and 1980s were roughly seven million square kilometres.

The sea-ice covered area is measured with the help of satellites. The high-resolution microwave satellite data are jointly provided by the University of Bremen and Universität Hamburg. They allow to precisely analyse the daily sea-ice extent over the entire Arctic. “That’s particularly important for the shipping industry. This summer, the Northeast Passage along the Russian coast could be used without the need for icebreakers, and many ships also used the Northwest Passage,” says Gunnar Spreen from the University of Bremen’s Institute of Environmental Physics.

AWI prognoses proven to be accurate

Several months before the September minimum, scientists from around the globe provided information on the projected minimum sea-ice areas in the “Sea Ice Outlook”. This year, the Alfred Wegener Institute contributed estimates based on two different forecasting methods for Arctic seasonal sea-ice, which produced similar results very close to the actual September minimum: in July, the AWI’s dynamic forecasting model called for a September minimum of 4.93 million square kilometres, while its static model estimated an area of 4.74 million square kilometres.

This year, the spatial distribution of sea-ice differed from the patterns in recent years, and from the long-term pattern. Less ice than in 2016 was recorded in the Chukchi and East Siberian Seas. In contrast, more ice was observed north of Svalbard and in the Beaufort Sea. In some regions on the fringes of the Artic Ocean, surface melting began fairly early, while in large regions of the central Arctic Ocean, melt onset was observed a few days later than the average for 1981 to 2010. The timing of melt onset is not only important with regard to the overall mass of sea ice; it also determines the lifecycle of the organisms in and below the sea ice.

During the past weeks, sea-ice thickness measurements were the main topic of the TIFAX (Thick Ice Feeding Arctic Export) campaign, which involved research aircraft using laser scanners and a towed electromagnetic probe. In the area surveyed, which lies to the north of the Fram Strait between Greenland and Svalbard, the sea-ice thickness was ca. 1.7 metres, roughly 50 centimetres more than was recorded in 2016.

This is most likely due in part to a higher percentage of several-year-old ice in the area. Nevertheless, the measured thickness is ca. 30 per cent lower than between 2001 and 2004. As Marcel Nicolaus summarises, “Despite the warm winter, the sea ice wasn’t unusually thin. Our explanation is that the small and thin ice coverage from the previous summer – the second-smallest area ever recorded – grew faster and thicker than in other years, since thin ice grows faster than thick ice.”

The exact date and value of the minimum sea ice extent in 2017 can only be determined in the coming weeks, after a significant increase. The monthly mean of the September sea ice extent can then only be determined in October. It is expected to be roughly 5 million square kilometres for September 2017. The scientists summarize: “The low Arctic sea ice extent ranks amongst the low values of the last decade. We do not expect an extent of 6 or 7 million square kilometres in the coming decades, as it was typical for the decades up to the year 2000.”

For more detailed information on sea-ice development in the Arctic and the latest sea-ice maps, please visit: http://www.meereisportal.de/en/

Notes for Editors:

Your academic contact partner at the Alfred Wegener Institute is Dr Marcel Nicolaus (Tel.: +49 (0) 471 4831-2905; e-mail: Marcel.Nicolaus@awi.de).

Your contact partner at the Communications and Media Relations Department is Dr Folke Mehrtens (Tel.: + 49 (0) 471 4831-2007; e-mail: Folke.Mehrtens@awi.de).

Your academic contact partner at Universität Hamburg’s Center for Earth System Research and Sustainability is Prof Lars Kaleschke (Tel: +49 (0) 40 42838 6518; e-mail: Lars.kaleschke@uni-hamburg.de). Your contact partner at the Communications and Media Relations Department is Stephanie Janssen (Tel: +49 (0) 40 42838 7596; e-mail: stephanie.janssen@uni-hamburg.de).

Your academic contact partner at the University of Bremen is Dr Gunnar Spreen (Tel: +49 (0) 421 218 62158; email: gunnar.spreen@uni-bremen.de).

Printable images on this topic can be found in the online version of this press release at: https://www.awi.de/nc/en/about-us/service/press/press-release/arktisches-meereis...

The Alfred Wegener Institute pursues research in the Arctic, Antarctic and the oceans of the middle and high latitudes. It coordinates polar research in Germany, while also providing essential infrastructure for the international scientific community, including the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the 18 Research Centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>