Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aquifers suffocate when river beds silt up

03.12.2013
In the course of the last few decades, the oxygen concentration levels in aquifers in the Swiss Plateau have dropped irregularly.

Results of the National Research Programme "Sustainable Water Management” (NRP 61) suggest that the irregular decrease might be related to various degrees of silting in watercourses.

A significant proportion of the water we use comes from aquifers that are fed by infiltration along watercourses. River water temperatures have been rising regularly for several decades. By analysing data from municipal pumping stations, the Eawag researchers Simon Figura, David Livingstone and Rolf Kipfer have observed that this trend also extends to groundwater, where the average temperature increase is 0.3 to 0.6°C every ten years.

Sawtooth decrease
The increase in groundwater temperature is probably having a negative impact on the concentration of dissolved oxygen in ground water by encouraging biological activity and therefore oxygen consumption. At the same time, it is reducing the solubility of the oxygen in the water.

A new analysis by the researchers now confirms that there is a trend towards lower levels of dissolved oxygen. As opposed to water temperatures, this decrease is not continuous but follows a sawtooth pattern: it is regularly interrupted by sudden increases that cannot be solely due to temperature.

By analysing the variations in water flow rate and the pumping volumes, the researchers have developed a new hypothesis: high river discharge and high pumping volumes lead to better river bed infiltration. This, in turn, leads to a swift increase in the oxygen concentration. However, it seems that this only happens after extreme spates that sweep away the silt on river beds. The spates thus clean the natural filter formed by river beds, which facilitates greater renewed infiltration and reoxygenation of the groundwater.

This hypothesis on the effects of the removal of riverbed silting is supported by field observations. During the 1970s, a layer of zebra mussels approximately five centimetres thick formed on the bed of the Rhine near to one of the pumping stations studied by the researchers. Several years later, divers noticed that the layer was no longer there. For this period, measurements indicate a clear increase in dissolved oxygen concentrations in aquifers.

What does the future hold?
Climate forecasts for the 21st century predict an increase in extreme weather. Scorching summers such as that experienced in 2003 are likely to become more frequent. Some aquifers became anoxic in 2003. One of the major consequences of this was the solubilisation of iron and manganese particles, which precipitated out of the water in pumping stations, where they negatively affected the operation of the pumping wells. However, there should also be more spates to clean river beds and encourage groundwater oxygenation. The researchers thus expect the slow decline in oxygen levels to continue, but believe that the spates as well as high discharge and high pumping volumes will prevent continuous aquifer anoxia.
(*) Simon Figura, David Livingstone, and Rolf Kipfer (2013). Competing controls on groundwater oxygen concentrations revealed in multidecadal time-series from riverbank filtration sites. Water Resources Re-search. DOI: 10.1002/2013WR013750

(Available to journalists in PDF format from the SNSF: com@snf.ch)

Contact
Simon Figura
Eawag
Überlandstrasse 133
CH-8600 Dübendorf
Tel.: +41 58 765 55 10
E-mail: simon.figura@eawag.ch
National Research Programme "Sustainable Water Management" (NRP 61)
The National Research Programme “Sustainable Water Management” (NRP 61) develops scientific principles and methods for the sustainable management of water resources, which are under increasing pressure. NRP 61 explores the effects of climate and social changes on these resources and identifies the risks and future conflicts associated with their use. NRP 61 operates with CHF 12 million for a research duration of four years. Website of NRP 61 "Sustainable Water Management": www.nrp61.ch

Weitere Informationen:

http://www.snf.ch/E/media/pressreleases/Pages/2013.aspx
http://www.nrp61.ch

Medien - Abteilung Kommunikation | idw
Further information:
http://www.snf.ch
http://www.nrp61.ch

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>