Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017

New high-resolution maps of the complex landscape beneath a major West Antarctic glacier will be valuable for forecasting global sea level rise, researchers say.

Radar surveys of the land beneath Pine Island Glacier, obtained by snowmobile, have revealed a surprisingly diverse, mountainous landscape under the ice.


Detailed radar maps of Pine Island Glacier in West Antarctica will improve forecasts of ice melt from this key contributor to sea levels.

Credit: Damon Davies

The findings are significant as Pine Island Glacier is the fastest melting glacier in Antarctica and currently accounts for up to 10 per cent of global sea level rise.

Ice melting into the ocean in the region is expected to increase as the climate warms and the West Antarctic ice sheet continues to thin.

The survey of the glacier, the most detailed to date, was carried out during the Antarctic summer of 2013 - 2014 by a team working round the clock. Snow vehicles equipped with radar sensors surveyed about 1500 sq km of ice, taking readings every few hundred metres.

The findings represent significant progress in the data available to inform forecasts of ice loss. Previous computer models used less comprehensive data from aerial radar surveys, which did not account for a range of ice bed shapes and the effects these could have on glacier friction.

The study shows that the diverse nature of the terrain beneath the glacier is the biggest factor affecting the flow of the ice across the landscape.

Scientists will incorporate the new findings into computer models used to project the glacier's future.

The study, published in Nature Communications, was led by the University of Edinburgh in collaboration with the British Antarctic Survey, the Universities of Swansea, Exeter and Aberdeen, and partners in the US and New Zealand. It was funded under the Natural Environment Research Council's iSTAR programme.

Dr Robert Bingham, of the University of Edinburgh's School of GeoSciences, who led the research, said: "Detailed understanding of this diverse landscape, and how that will impact on ice melt from Antarctica's fastest disappearing important glacier, will give us valuable clues as to how warming in this region will impact on global sea level."

Damon Davies, of the University of Edinburgh's School of GeoSciences, who took part in the research, said: "Pine Island Glacier is a key contributor to sea level rise, so this major step forward in understanding its dynamics will help improve our predictions of ice melt into the ocean."

Professor David Vaughan from British Antarctic Survey, who co-led the study, said: "These maps have revealed new features under Pine Island Glacier that we never thought were there. The bed turns out to be much rougher than we thought. There are mountains and deep scour marks which are clearly going to be influencing the flow and behaviour of the ice. In order to really understand how the glacier is going to respond to future change, we need to understand its interaction with the bed and these high resolution maps let us begin to do this."

Media Contact

Catriona Kelly
Catriona.Kelly@ed.ac.uk
44-779-135-5940

 @edinunimedia

http://www.ed.ac.uk 

Catriona Kelly | EurekAlert!

Further reports about: Antarctic Pine Island Glacier ice loss sea level sea level rise

More articles from Earth Sciences:

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Using satellites to measure rates of ice mass loss in glaciers
16.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>