Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic glacier thinning at alarming rate

18.08.2009
The thinning of a gigantic glacier in Antarctica is accelerating, scientists warned today.

The Pine Island Glacier in West Antarctica, which is around twice the size of Scotland, is losing ice four times as fast as it was a decade years ago.

The research, published in the journal Geophysical Research Letters, also reveals that ice thinning is now occurring much further inland. At this rate scientists estimate that the main section of the glacier will have disappeared in just 100 years, six times sooner than was previously thought.

The Pine Island Glacier is located within the most inaccessible area of Antarctica – over 1000 km from the nearest research base – and was for many years overlooked. Now, scientists have been able to track the glacier's development using continuous satellite measurements over the past 15years.

"Accelerated thinning of the Pine Island Glacier represents perhaps the greatest imbalance in the cryosphere today, and yet we would not have known about it if it weren't for a succession of satellite instruments," says Professor Andrew Shepherd, a co-author of the research from the School of Earth and Environment at the University of Leeds.

"Being able to assemble a continuous record of measurements over the past 15 years has provided us with the remarkable ability to identify both subtle and dramatic changes in ice that were previously hidden," he adds.

Scientists believe that the retreat of glaciers in this sector of Antarctica is caused by warming of the surrounding oceans, though it is too early to link such a trend to global warming.

The 5,400 km squared region of the Pine Island Glacier affected today is big enough to impact the rate at which sea level rise around the world.

"Because the Pine Island Glacier contains enough ice to almost double the IPCC's best estimate of 21st century sea level rise, the manner in which the glacier will respond to the accelerated thinning is a matter of great concern " says Professor Shepherd.

The research was led by Professor Duncan Wingham at University College London, and was funded by the UK Natural Environment Research Council.

For more information

Professor Andrew Shepherd is available for interview. Mobile: 0795 226 5527, Email: a.shepherd@leeds.ac.uk

A video showing the data of the ice loss in the Pine Island Glacier is available to journalists on request.

Please contact Clare Ryan in the University of Leeds press office on 0113 343 8059, Email: c.s.ryan@leeds.ac.uk

Notes to Editors

The 2008 Research Assessment Exercise showed the University of Leeds to be the UK's eighth biggest research powerhouse. The University is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. The University's vision is to secure a place among the world's top 50 by 2015. www.leeds.ac.uk

The School of Earth and Environment at the University of Leeds is has more than 90 academic staff, over 60 research staff and 140 postgraduate researchers. It focuses on a multidisciplinary approach to understanding our environment, studying the Earth from its core to its atmosphere and examining the social and economic dimensions of sustainability. www.see.leeds.ac.uk/index.htm

The Natural Environment Research Council is the UK's main agency for funding and managing research, training and knowledge exchange in the environmental sciences. It coordinates some of the world's most exciting research projects, tackling major issues such as climate change, environmental influences on human health, and the genetic make-up of life on earth.

Clare Ryan | EurekAlert!
Further information:
http://www.leeds.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>