Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic bottom waters freshening at unexpected rate

26.01.2017

Shift could disturb ocean circulation and hasten sea level rise, researchers say

In the cold depths along the sea floor, Antarctic Bottom Waters are part of a global circulatory system, supplying oxygen-, carbon- and nutrient-rich waters to the world's oceans. Over the last decade, scientists have been monitoring changes in these waters. But a new study from the Woods Hole Oceanographic Institution (WHOI) suggests these changes are themselves shifting in unexpected ways, with potentially significant consequences for the ocean and climate.


In some places along the Antarctic coast, ice formation causes seawater to grow saltier and therefore denser, so that it sinks to the sea floor. Known as the Antarctic Bottom Waters (AABW), these deep, cold waters play a critical role in regulating circulation, temperature, and availability of oxygen and nutrients throughout the world's oceans.

Photo by Alison Macdonald, Woods Hole Oceanographic Institution


WHOI researchers gathered seawater samples using an instrument called a rosette -- a rose-like array of 36 bottles that can be individually opened and closed to collect samples at different locations and depths in the ocean.

Photo by Alison Macdonald, Woods Hole Oceanographic Institution

In a paper published January 25 in Science Advances, a team led by WHOI oceanographers Viviane Menezes and Alison Macdonald report that Antarctic Bottom Water (AABW) has freshened at a surprising rate between 2007 and 2016--a shift that could alter ocean circulation and ultimately contribute to rising sea levels.

"If you change the circulation, you change everything in the ocean," said Menezes, a WHOI postdoctoral investigator and the study's lead author. Ocean circulation drives the movement of warm and cold waters around the world, so it is essential to storing and regulating heat and plays a key role in Earth's temperature and climate. "But we don't have the whole story yet. We have some new pieces, but we don't have the entire puzzle."

The puzzle itself isn't new: past studies suggest that AABW has been undergoing significant changes for decades. Since the 1990s, an international program of repeat surveys has periodically sampled certain ocean basins around the world to track the circulation and conditions at these spots over time. Along one string of sites, or "stations," that stretches from Antarctica to the southern Indian Ocean, researchers have tracked the conditions of AABW--a layer of profoundly cold water less than 0°C (it stays liquid because of its salt content, or salinity) that moves through the abyssal ocean, mixing with warmer waters as it circulates around the globe in the Southern Ocean and northward into all three of the major ocean basins.

The AABW forms along the Antarctic ice shelves, where strong winds cool open areas of water, called polynyas, until some of the water freezes. The salt in the water doesn't freeze, however, so the unfrozen seawater around the ice becomes saltier. The salt makes the water denser, causing it to sink to the ocean bottom.

"These waters are thought to be the underpinning of the large-scale global ocean circulation," said Macdonald, a WHOI senior research specialist and the study's co-author. "Antarctic Bottom Water gets its characteristics from the atmosphere--for example, dissolved carbon and oxygen--and sends them deep into the ocean. Then, as the water moves around the globe, it mixes with the water around it and they start to share each other's properties. It's like taking a deep breath and letting it go really slowly, over decades or even centuries."

As a result, the frigid flow plays a critical role in regulating circulation, temperature, and availability of oxygen and nutrients throughout the world's oceans, and serves as both a barometer for climate change and a factor that can contribute to that change.

A past study using the repeat survey data found that AABW had warmed and freshened (grown less saline) between 1994 and 2007. When Macdonald and Menezes revisited the line of stations, they measured how AABW has changed in the years since.

During the austral summer of 2016, they joined the crew of the research ship R/V Revelle and cruised north from Antarctica to Australia, braving frequent storms to collect samples every 30 nautical miles. In a shipboard lab, they analyzed the samples using data from conductivity-temperature-depth (CTD) sensors, which measure the water's salinity, temperature and other properties, with support from study co-author Courtney Schatzman of the Scripps Institution of Oceanography, who processed the raw data.

The team found that the previously detected warming trend has continued, though at a somewhat slower pace. The biggest surprise, however, was its lack of saltiness: AABW in this region has grown fresher four times faster in the past decade than it did between 1994 and 2007.

"I thought, 'Oh wow!' when I saw the change in salinity," said Menezes. "You collect the data and sometimes you spend 2 to 3 years to find something, but this time we knew what we had within hours, and we knew it was very unexpected."

Such a shift, were it global, could significantly disrupt ocean circulation and sea levels.

"The fresher and warmer the water is, the less dense it will be, and the more it will expand and take up more space - and that leads to rising sea levels," Macdonald said. "If these waters no longer sink, it could have far reaching affects for global ocean circulation patterns."

Questions remain around the cause of the shift. Menezes and Macdonald hypothesize that the freshening could be due to a recent landscape-changing event. In 2010, an iceberg about the size of Rhode Island collided with Antarctica's Mertz Glacier Tongue, carving out a more-than-1,000-square-mile piece and reshaping the icescape of the George V/Adelie Land Coast, where the AABW observed in this study is thought to form. The subsequent melting dramatically freshened the waters there, which may have in turn freshened the AABW as well. Future studies could use chemical analysis to trace the waters back to the site of the collision and calving and confirm the hypothesis.

###

This research was funded in part by the National Science Foundation and the National Oceanic and Atmospheric Administration.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact

WHOI Media Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu 

WHOI Media Office | EurekAlert!

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>