Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient New Zealand 'Dawn Whale' identified by Otago researchers

19.11.2014

University of Otago palaeontologists are rewriting the history of New Zealand's ancient whales by describing a previously unknown genus of fossil baleen whales and two species within it.

Otago Department of Geology PhD student Robert Boessenecker and his supervisor Professor Ewan Fordyce have named the new genus Tohoraata, which translates as 'Dawn Whale' in Māori.


University of Otago researchers have described a new genus of ancient baleen whales that they have named Tohoraata (a Māori term which can be translated as Dawn Whale). The genus belongs to the toothless filter-feeding family Eomysticetidae, and it is the first time members of this family have been identified in the Southern Hemisphere. They named the younger of the two fossil whales, which may be a descendent of the elder, as Tohoraata raekohao (pictured). Raekohao means 'holes in the forehead'. Researcher Robert Boessenecker says this whale lived between 26-25 million years ago and vaguely resembles a minke whale but was more slender and serpent-like. Its skull, which contains a number of holes near its eye sockets for arteries, was probably about two metres in length and the whole animal would have been eight metres long.

Credit: Robert Boessenecker

The two whales, which lived between 27-25 million years ago, were preserved in a rock formation near Duntroon in North Otago. At that time the continent of Zealandia was largely or completely under water and the whales were deposited on a continental shelf that was perhaps between 50 to 100 metres deep.

The new genus that the fossils represent belongs to the toothless filter-feeding family Eomysticetidae, and it is the first time members of this family have been identified in the Southern Hemisphere.

They named the younger of the two fossil whales, which may be a descendent of the elder, as Tohoraata raekohao. Raekohao means 'holes in the forehead'.

Mr Boessenecker says this whale lived between 26-25 million years ago and vaguely resembles a minke whale but was more slender and serpent-like. Its skull, which contains a number of holes near its eye sockets for arteries, was probably about two metres in length and the whole animal would have been eight metres long.

"This new species differs from modern baleen whales in having a smaller braincase and a skull that is generally much more primitive, with substantially larger attachments for jaw muscles. The lower jaw retains a very large cavity indicating that its hearing capabilities were similar to archaic whales."

The researchers also determined that the older fossil whale from the site, which was collected in 1949 and named in 1956, had been misidentified as belonging to the genus Mauicetus, a more advanced type of whale called a "cetothere". They have now changed its name from Mauicetus waitakiensis to Tohoraata waitakiensis.

Mr Boessenecker says this particular fossil had been poorly understood for more than 50 years and only with this study was it proven not to be from its originally attributed genus. The two whales have now become the first eomysticetids to be reported outside of South Carolina, USA, and Japan.

"Researchers contend with confusing or surprising fossils in museum collections all the time. Often, the best way to solve these mysteries is to go out and dig up another one, which is what Professor Fordyce and his colleagues did in 1993 when they collected the partial skull of Tohoraata raekohao."

Eomysticetids occupy an important position in the evolutionary tree of cetaceans: they are the earliest toothless baleen-bearing cetaceans, and in many characteristics are intermediate between toothed baleen whales and modern baleen whales, he says.

"They are the first baleen whales to have been completely toothless, and are therefore the earliest known cetaceans to have wholly relied upon filter feeding."

This study formed part of Mr Boessenecker's PhD thesis and was supported by a University of Otago Doctoral Scholarship. The Tohoraata raekohao fossil was collected during fieldwork funded by a grant from the National Geographic Society.

Robert Boessenecker | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>