Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Greenland methane study good news for planet

24.04.2009
An analysis of ancient Greenland ice suggests a spike in the greenhouse gas methane about 11,600 years ago originated from wetlands rather than the ocean floor or from permafrost, a finding that is good news according to the University of Colorado at Boulder scientist who led the study.

Methane bound up in ocean sediments and permafrost, called methane clathrate, has been a concern to scientists because of its huge volume, greenhouse gas potency and potential for release during periods of warming, said Vasilii Petrenko, a CU-Boulder postdoctoral fellow and lead study author.

If just 10 percent of methane from clathrates -- an ice-like substance composed of methane and water -- were suddenly released into Earth's atmosphere, the resulting increase in the greenhouse effect would be equivalent to a 10-fold increase in atmospheric carbon dioxide, he said.

Using carbon 14 as a "tracer" to date and distinguish wetland methane from methane clathrates, an international team determined the methane jump 11,600 years ago likely emanated primarily from Earth's wetlands. "From a global warming standpoint, this appears to be good news," said Petrenko of CU-Boulder's Institute of Arctic and Alpine Research, lead author on a paper that was published in Science on April 24.

Methane is the third most powerful greenhouse gas behind water vapor and CO2 and accounts for roughly 20 percent of the human-caused increase in the greenhouse effect.

As Earth emerged from the last ice age, temperatures in some places in the Northern Hemisphere shot up about 18 degrees Fahrenheit in just 20 years, said Petrenko. Scientists have been concerned that such abrupt warming events could trigger huge oceanic methane "burps" caused by the dissociation of seafloor clathrates, providing a positive climate feedback mechanism that could drive up Earth's temperatures still further.

"If we found that clathrates release a lot of methane to the atmosphere during abrupt episodes of warming, that could signal big trouble for the planet, " said Petrenko. "But even though wetlands appear be the primary source, it's still something to be concerned about."

Methane emitted from human activities like rice cultivation, livestock, the burning of grasslands, forests and wood fuels, gas leaks from fossil fuel production and waste management activities have nearly tripled methane concentrations in Earth's atmosphere in the past 250 years, Petrenko said. The amount of carbon held in methane clathrate deposits on Earth may equal the amount of carbon in all oil, coal and gas reserves on the planet, he said.

Study co-authors were from the Scripps Institution of Oceanography, Oregon State University, the Australian Nuclear Science and Technology Organisation, the National Institute of Water and Atmospheric Research in New Zealand, Danish Technical University and the Commonwealth Scientific and Industrial Research Organisation in Australia. Petrenko conducted most of the research as part of his doctoral thesis at the Scripps Institution of Oceanography under Professor Jeffrey Severinghaus.

The research team extracted several tons of ancient ice from the western margin of the Greenland ice sheet at a site called Pakitsoq, the largest ice samples ever recovered for a climate change study. The researchers cut the ice into blocks with electric chain saws, dumped 17 cubic feet at a time into a vacuum melting tank heated by powerful propane torches, and transferred ancient air released from bubbles in the ice into cylinders for subsequent laboratory analysis, Petrenko said.

The effort, which lasted five field-seasons, was "an undertaking of epic proportions," said Petrenko. "This was the first measurement of its kind, and we really pushed the envelope," he said. "It represents a major advance in analytical methods for studying ancient ice."

Methane clathrates are only stable in conditions that combine cold temperatures and high pressures. Some scientists suspect that a swift and massive warming in the early Cenozoic era about 56 million years ago may have been triggered by huge methane releases from clathrates into the atmosphere, Petrenko said.

Methane levels in Earth's atmosphere increased about 2 percent from about A.D. 1 to 1000 and decreased by 2 percent from 1000 to 1700, which may have been due in part to decreased landscape burning by indigenous people in the Americas devastated by introduced diseases, according to a 2005 CU-Boulder study. About 60 percent of atmospheric methane is now generated from human-related activities, according to the International Panel on Climate Change.

The 2009 Greenland ice study was funded by the National Science Foundation, the American Chemical Society and several other agencies. Petrenko's postdoctoral fellowship at CU-Boulder is funded by The University Corporation for Atmospheric Research.

Contact: Vasilii Petrenko, 303-492-7132 Vasilii.petrenko@colorado.edu
Jim Scott, 303-492-3114

Vasilii Petrenko | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>