Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An increase in Southern Ocean upwelling may explain the Holocene CO2 rise

31.07.2018

During the 10 000 years preceding the industrial revolution, there was a small but significant increase in atmospheric CO2 concentrations which may have played a crucial role in stabilizing the climate of the Holocene epoch. Although some hypotheses have been proposed to explain this CO2 change, its ultimate causes remain unknown. An international team led by scientists from the Max Planck Institute for Chemistry and Princeton University, in a study published this week in the journal Nature Geoscience, suggest that an increase in Southern Ocean upwelling may have been responsible for this atmospheric CO2 rise.

The findings about past ocean changes could also have implications for how much atmospheric CO2 will rise due to fossil fuel burning.


Centric diatom is one of the fossils analyzed to study the marine nitrogen cycle.

Dr. Anja Studer/MPIC

Human populations and civilization expanded rapidly over the last 10 000 years, known as the Holocene epoch. The Holocene was an “interglacial period,” one of the rare intervals of warm climate that have occurred over the ice age cycles of the last million years. One important characteristic of the Holocene was that its climate was unusually stable, without a major cooling trend that typifies the other interglacials.

A second unique feature is that the concentration of CO2 in the atmosphere rose about 20 parts per million (ppm), from 260 ppm in the early Holocene to 280 ppm in the late Holocene, whereas CO2 was typically stable or declined over other interglacial periods. For comparison, since the beginning of the industrialization until now, the CO2 concentration in the atmosphere has increased from 280 to more than 400 ppm as a consequence of the burning of fossil fuels.

In this context, the 20 ppm increase observed during the Holocene may seem small. However, scientist think that this CO2 rise played a key role in preventing progressive cooling over the Holocene, which may have facilitated the development of complex human civilizations.

In order to study the potential causes of the Holocene CO2 rise, a team of scientists led by the Max Planck Institute for Chemistry and Princeton University investigated samples from several different areas of the Southern Ocean. The samples included three fossil types: diatoms and foraminifers, both shelled microorganisms found in the oceans, and deep-sea corals. From the nitrogen isotope ratios of the trace organic matter trapped in the mineral walls of these fossils, the scientists reconstructed the evolution of the nutrient concentrations in Southern Ocean surface waters over the past 10,000 years.

“The method we used to analyze the fossils is unique and provides a new way to study past changes in ocean conditions ”, says Anja Studer, postdoctoral researcher at the Max Planck Institute for Chemistry in Mainz and first author of the study.

The fossil-bound nitrogen isotope measurements indicate that during the Holocene, large amounts of water, rich in nutrients and CO2, upwelled from the deep ocean to the surface of the Southern Ocean. While the cause for the increased upwelling is not yet clear, the most likely process appears to be a change in the southern hemisphere’s westerly winds, or “Roaring 40s”, a belt of eastward-blowing winds that circles Antarctica.

The upwelling change would have affected the ocean’s “biological pump,” in which the growth and eventual sinking of phytoplankton takes up carbon dioxide from the atmosphere and stores it in the deep ocean. Because of the enhanced Southern Ocean upwelling, the biological pump weakened over the Holocene, allowing CO2 to leak from the deep ocean into the atmosphere. Thus, the new results suggest that the ocean may have been responsible for the special stability of Holocene climate.

So if the findings from the Holocene can be used to predict how Southern Ocean upwelling will change in the future, it will improve our ability to forecast changes in atmospheric CO2 and thus in global climate.

Wissenschaftliche Ansprechpartner:

Dr. Anja Studer, Dr. Alfredo Martinez-Garcia and Prof. Dr. (ETHZ) Gerald H. Haug
Climate Geochemistry Department
Max Planck Institute for Chemistry
E-Mails: anja.studer@mpic.de, a.martinez-garcia@mpic.de, gerald.haug@mpic.de

Prof. Daniel M. Sigman
Department of Geosciences
Princeton Universitiy
E-Mail: sigman@princeton.edu

Originalpublikation:

Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise
Anja S. Studer, Daniel M. Sigman, Alfredo Martínez-García, Lena M. Thöle, Elisabeth Miche, Samuel L. Jaccard, Jörg A. Lippold, Alain Mazaud, Xingchen T. Wang, Laura F. Robinson, Jess F. Adkins, Gerald H. Haug

Nature Geoscience, July 2018

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>