Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018

Berkeley Lab researchers devise system to monitor contaminant plumes

Groundwater contamination is increasingly recognized as a widespread environmental problem. The most important course of action often involves long-term monitoring. But what is the most cost-effective way to monitor when the contaminant plumes are large, complex, and long-term, or an unexpected event such as a storm could cause sudden changes in contaminant levels that may be missed by periodic sampling?


An aerial view of cleanup efforts at the Savannah River Site.

Credit: Savannah River Site

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Savannah River National Laboratory have developed a low-cost method for real-time monitoring of pollutants using commonly available sensors. Their study, "In Situ Monitoring of Groundwater Contamination Using the Kalman Filter," was published recently in the journal, Environmental Science & Technology.

"Conventional methods of monitoring involve taking water samples every year or every quarter and analyzing them in the lab," said Haruko Wainwright, a Berkeley Lab researcher who led the study. "If there are anomalies or an extreme event, you could miss the changes that might increase contaminant concentrations or potential health risk. Our methodology allows continuous monitoring in situ using proxy measurements, so we can track plume movement in real time."

"Analysis of the autonomous in situ data can be rapidly analyzed remotely using machine learning methods," she added. "It can act as an early warning system - we can detect sudden changes in contaminant levels. These changes may indicate a need for more or less intervention in terms of the remediation strategy, ideally leading to improved as well as more cost-effective cleanup."

Environmental monitoring has become more important in recent years as remediation methods have been shifting away from intensive groundwater treatment and soil removal. "Intensive cleanup has a lot of negative environmental impacts, including air pollution, large energy-water use, and waste production," Wainwright said. "So experts have started thinking about a paradigm shift from this very intensive remediation to a more sustainable remediation, or 'green remediation,' so we don't just think at the contaminant level but we think about the net environmental impact."

However, long-term monitoring could be costly over time for large contaminations. What's more, current long-term monitoring strategies do not consider how abrupt or gradual changes in weather, such as heavy rain events, might influence plume behaviors. This aspect is particularly important when considering persistent plumes, such as those associated with metal or radionuclide contamination.

The new approach starts with sensors to track water quality variables that have been determined to be reliable indicators of contaminant levels. For the purposes of this study, the researchers tracked levels of tritium and uranium-238 in the groundwater at the Savannah River Site, a former nuclear weapons production site in South Carolina managed by the DOE.

For this site, they measured the acidity (or pH) levels and specific conductance (a measure of electrical conductance); these variables were determined to be reliable indicators for tritium and uranium-238 concentrations. The data from the multiple sensors were then fed into a Kalman filter to estimate contaminant concentrations. A Kalman filter is not a physical filter but rather a mathematical algorithm that can integrate mixed time-series data to make estimates. It is commonly used in various fields, such as traffic prediction and remote sensing.

Using historical data from the Savannah River Site, the researchers found that their technique provided reliable information about plume behavior over the last 20 years, indicating that the new approach holds significant promise as a long-term monitoring strategy for rapidly assessing a contaminant's plume stability. Another advantage over conventional approaches is that it can reduce the frequency of manual groundwater sampling and lab analysis, and thus reduce the monitoring cost.

Wainwright, who is an expert in groundwater contamination and environmental data analytics, said this methodology can be used for both surface and underground water. It can also potentially be used to track other metals, radionuclides, and organic compounds commonly found in groundwater, such as arsenic, chromium, and fuels.

"There are so many different types of sensors available now, and sensor networking and rapid statistical analysis is straightforward," she said. "We can put together all types of in situ sensors and estimate the target contaminant concentration using this framework for data integration in real-time."

She added: "Improved monitoring techniques are essential to protect public health and the ecology. People feel safe if it's properly monitored. Our technique is a way to monitor such sustainable remediation - effectively and cheaply."

###

The study was funded by DOE's Office of Environmental Management and Office of Science. The other co-authors of the study are Franziska Schmidt of UC Berkeley, Boris Faybishenko of Berkeley Lab, Miles Denham of Panoramic Environmental Consulting, and Carol Eddy-Dilek of Savannah River National Laboratory. The advances build upon concepts developed through the Office of Science's Watershed Scientific Focus Area project.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Julie Chao
jhchao@lbl.gov
510-486-6491

 @BerkeleyLab

http://www.lbl.gov 

Julie Chao | EurekAlert!
Further information:
https://newscenter.lbl.gov/2018/08/13/algorithm-provides-early-warning-system-for-tracking-groundwater-contamination/
http://dx.doi.org/10.1021/acs.est.8b00017

More articles from Earth Sciences:

nachricht Searching for clues on extreme climate change
18.09.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Multiyear Tracking of Atmospheric Radicals
12.09.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

Novel carbon source sustains deep-sea microorganism communities

18.09.2018 | Life Sciences

New insights into DNA phase separation

18.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>