Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alabama Researchers Get Close View of Winter Storm

31.01.2011
Who would have guessed that the perfect place to gather detailed scientific data from a powerful snowstorm would be in Alabama?

That turned out to be the case recently, however, as scientists at The University of Alabama in Huntsville and NASA's Earth Sciences Office used a network of mobile and on-site instruments -- many designed to study severe thunderstorms -- to get some of the most detailed measurements ever taken of a major snow storm in action.

The hometown storm that gave them this opportunity arrived only after UAHuntsville's severe weather team spent portions of the last two winters as part of a multi-organization research campaign, intercepting storms from Wisconsin to Columbia, S.C., (and storms with snow as far south as Paducah, Ky.) without getting the complete dataset they were seeking.

Another group of UAH scientists working with NASA recently collected data about snowstorms in Finland.

"This was much more economical and efficient," said Dr. Kevin Knupp, a professor of atmospheric science and the director of UAHuntsville's severe weather research. "We have all these instruments around here and we can deploy them at a moment's notice. We have the luxury of grabbing data on significant weather systems as they go through."

To help grab data on the Jan. 9-10 storm, the research team used university and NASA instruments at Cramer Research Hall, two lightning detector networks, an advanced dual polarization Doppler radar at Huntsville International Airport, and the National Weather Service Doppler radar at Hytop in Jackson County. Knupp also sent the university's mobile dual polarization Doppler radar unit to set up outside of New Market in northeastern Madison County.

"We are studying the storm's 'comma,' the area of small scale waves or instabilities near the end of a storm system," said Ryan Wade, a student in UAHuntsville's atmospheric science Ph.D. program, as he helped set up the radar in New Market. "Those instabilities can dump large amounts of snow over small areas. That's why you might have a storm that drops four inches of snow across a hundred miles, but eight inches in one place and a dusting in another.

What causes these waves isn't well studied or understood. This is a unique opportunity to study the comma part of this storm."

Learning more about what happens in the comma of a snowstorm was the plan. Then the storm got ... interesting.

The interesting things included thundersnow -- with one lightning flash stretching about 50 miles from the top of Monte Sano to just south of Moulton -- and almost a dozen gravity waves rippling westward from the top of Monte Sano, apparently triggering some of the heaviest snowfall in North Alabama records.

Lightning detection networks set up by NASA and UAHuntsville scientists detected seven lightning flashes during the snowstorm, including four that hit a broadcast tower on Monte Sano. The 50-mile-long flash hit just after 10:30 p.m., and included four cloud-to-ground strikes: Normal lightning detectors would have seen that single lightning bolt as four separate events.

Lightning occurs in snowstorms only under special conditions, which include the presence of updrafts. Ice particles carried aloft on these updrafts bump against each other, swapping electrons and building an electric charge.

But sustained updrafts are uncommon in snowstorms. That's where the gravity waves come in. A gravity wave is simply a wave in the atmosphere similar to waves in the water. Air is pushed up the front of the wave and falls down the back. These waves can start in a number of ways, such as a violent updraft in a thunderstorm or a sudden change in the jet stream.

Knupp says the 11 gravity waves that rippled across Huntsville and western Madison County and into eastern Limestone County the night of January 9 were caused by wind blowing out of the east bumping into and being pushed over Monte Sano after atmospheric conditions got right.

"The storm had almost continuous gravity waves, especially at the start. The first was about 9 p.m., just before the snow started," Knupp said, stopping to think. "That's interesting, too ... they started around the time the snow started. That might make sense."

In addition to providing the updrafts needed to trigger lightning, the waves also cause rapid cooling in clouds as ice and supercooled water in them are pushed upward. This might trigger heavy precipitation: One gravity wave went over minutes before a National Weather Service employee reported that one inch of snow fell in only 20 minutes.

The research team also found evidence of the storm waves they were looking for in the first place. "There were wave-like motions going on in different directions at different scales," said Knupp. "There were bands of snow coming from the southwest.

"At one point, between 9 a.m. and midnight, the Huntsville airport reported four inches of snowfall in one hour. That might happen in the Midwest, but not often. It will be very rare down here. I won't be surprised if that was caused by the interaction of one of these bands with a gravity wave."

Of course, one of the challenges with having a few dozen instruments gathering data on a weather event is finding resources to analyze the vast amount of data that is collected. For instance, one UAH radar unit operating on campus was pointed straight up so it could get a vertical profile of the passing storm's structure six times a second.

"We can't analyze everything. There's just too much," Knupp said. "It's frustrating but also good.”

Dr. Kevin Knupp, (256) 961-7762
kevin.knupp@nsstc.uah.edu
Ryan Wade, (256) 961-7847
For 'thundersnow' information:
Chris Schultz, (256) 961-7856
For NASA weather research:
Dr. Walt Petersen, (256) 961-7861

Dr. Kevin Knupp | Newswise Science News
Further information:
http://www.uah.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>