Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Pollution From Asia Affecting World’s Weather

23.01.2014
Extreme air pollution in Asia is affecting the world’s weather and climate patterns, according to a study by Texas A&M University and NASA’s Jet Propulsion Laboratory researchers.

Yuan Wang, a former doctoral student at Texas A&M, along with Texas A&M atmospheric sciences professors Renyi Zhang and R. Saravanan, have had their findings published in the current issue of Nature Communications.


NASA/JPL

Satellite photo shows huge air pollution clouds at far left. Japan is on the right.

Using climate models and data collected about aerosols and meteorology over the past 30 years, the researchers found that air pollution over Asia – much of it coming from China – is impacting global air circulations.

“The models clearly show that pollution originating from Asia has an impact on the upper atmosphere and it appears to make such storms or cyclones even stronger,” Zhang explains.

“This pollution affects cloud formations, precipitation, storm intensity and other factors and eventually impacts climate. Most likely, pollution from Asia can have important consequences on the weather pattern here over North America.”

China’s booming economy during the last 30 years has led to the building of enormous manufacturing factories, industrial plants, power plants and other facilities that produce huge amounts of air pollutants. Once emitted into the atmosphere, pollutant particles affect cloud formations and weather systems worldwide, the study shows.

Increases in coal burning and car emissions are major sources of pollution in China and other Asian countries.

Air pollution levels in some Chinese cities, such as Beijing, are often more than 100 times higher than acceptable limits set by the World Health Organization standards, Zhang says.

One study has shown that lung cancer rates have increased 400 percent in some areas due to the ever-growing pollution problem.

Conditions tend to worsen during winter months when a combination of stagnant weather patterns mixed with increased coal burning in many Asian cities can create pollution and smog that can last for weeks. The Chinese government has pledged to toughen pollution standards and to commit sufficient financial resources to attack the problem.

“The models we have used and our data are very consistent with the results we have reached,” Saravanan says.

“Huge amounts of aerosols from Asia go as high as six miles up in the atmosphere and these have an unmistakable impact on cloud formations and weather.”

Zhang adds that “we need to do some future research on exactly how these aerosols are transported globally and impact climate. There are many other atmospheric observations and models we need to look at to see how this entire process works.”

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA’s Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, Texas A&M’s Supercomputing facilities and the Ministry of Science and Technology of China.

Media contact: Keith Randall, News & Information Services, Texas A&M, at (979) 845-4644 or keith-randall@tamu.edu or Renyi Zhang at (979) 845-7656 or zhang@ariel.met.tamu.edu or R. Saravanan at (979) 845-0175 or sarava@tamu.edu or Alan Buis, JPL media contact, at (818) 354-0474 or alan.d.lbuis@jpl.nasa.gov

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | Newswise
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

nachricht The shelf life of pyrite
14.10.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>